化简下列式子:$\frac{x^{-1}+y^{-1}}{x^{-1}}+\frac{x^{-1}-y^{-1}}{x^{-1}}$
已知
已知表达式为 $\frac{x^{-1}+y^{-1}}{x^{-1}}+\frac{x^{-1}-y^{-1}}{x^{-1}}$
要求
我们需要求 $\frac{x^{-1}+y^{-1}}{x^{-1}}+\frac{x^{-1}-y^{-1}}{x^{-1}}$ 的值
解答
$\frac{x^{-1}+y^{-1}}{x^{-1}}+\frac{x^{-1}-y^{-1}}{x^{-1}} = \frac{(\frac{1}{x} + \frac{1}{y})}{\frac{1}{x}} + \frac{(\frac{1}{x} - \frac{1}{y})}{\frac{1}{x}} $
$ = \frac{\frac{x+y}{xy}}{\frac{1}{x}} + \frac{\frac{y-x}{xy}}{\frac{1}{x}}$
$= \frac{x+y}{y} + \frac{y-x}{y}$
$= \frac{x+y+y-x}{y}$
$= \frac{2y}{y}$
$= 2$
因此,$\frac{x^{-1}+y^{-1}}{x^{-1}}+\frac{x^{-1}-y^{-1}}{x^{-1}}$ 的值为 2。
- 相关文章
- 化简:\( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- 解下列方程组:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- 化简:$\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$。
- 如果 $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$,求 x 和 y。
- 解下列方程组:$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$,其中 $x≠-1$ 且 $y≠1$
- 用因式分解法解下列二次方程: $\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{5}{6}, x ≠1,-1$
- 将下列方程组化简为线性方程组后求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 1. 因式分解表达式 \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 因式分解表达式 \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 解下列方程组:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- 解下列方程组:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
- 如果 \( 2^{x}=3^{y}=6^{-z} \),证明 \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \)。
- 用因式分解法解下列二次方程: $\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$。
- 对于 $x=\frac{3}{4} $和 $y=\frac{-9}{8}$,在$(x+y)^{-1} 和 x^{-1}+y^{-1} $之间插入一个有理数。
- 验证: $x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。