解方程 解答:已知方程:$\frac{4}{x} -3=\frac{5}{2x+3} ;\ x$
$\neq 0,-3/2,\ for\ x.$
已知: 方程:$\frac{4}{x} -3=\frac{5}{2x+3} ;\ x$
$\neq 0,\ \frac{-3}{2}$
求解: 求解上述方程中的 $x$。
解答
已知方程为:$\frac{4}{x} -3=\frac{5}{2x+3} ;\ x$
$\neq 0,\ \frac{-3}{2}$
$\frac{4}{x} -3=\frac{5}{2x+3} ;\ x$
$\neq 0,\ \frac{-3}{2}$
$\Rightarrow \frac{4-3x}{x} =\frac{5}{2x+3}$
$\Rightarrow ( 4-3x)( 2x+3) =5x$
$\Rightarrow 8x+12-6x^{2} -9x=5x$
$\Rightarrow -6x^{2} -6x+12=0$
$\Rightarrow -6\left( x^{2} +x-2\right) =0$
$\Rightarrow x^{2} +x-2=0$
$\Rightarrow x^{2} +2x-x-2=0$
$x( x+2) -1( x+2) =0$
$( x+2)( x-1) =0$
如果 $x+2=0$
$\Rightarrow x=-2$
如果 $x-1=0$
$\Rightarrow x=1$
因此 $x=-2,\ 1$
- 相关文章
- 用因式分解法解下列二次方程:$\frac{4}{x}-3=\frac{5}{2x+3}, x ≠0,\frac{-3}{2}$
- 用因式分解法解下列二次方程:$\frac{2x}{x\ -\ 4}\ +\ \frac{2x\ -\ 5}{x\ -\ 3}\ =\ \frac{25}{3},\ x\ ≠\ 3,\ 4$
- 用因式分解法解下列二次方程:$\frac{x-2}{x-3}+\frac{x-4}{x-5}=\frac{10}{3}, x ≠3, 5$
- 解方程 $\frac{2x}{5} - \frac{3}{5} = \frac{x}{2}+1$。
- 解下列线性方程:\( \frac{x-5}{3}=\frac{x-3}{5} \).
- 用因式分解法解下列二次方程:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- 用因式分解法解下列二次方程:$\frac{x\ +\ 3}{x\ +\ 2}\ =\ \frac{3x\ -\ 7}{2x\ -\ 3},\ x\ ≠\ -2,\ \frac{3}{2}$
- 解关于 $x$ 的方程:$\frac{1}{x}+\frac{2}{2x-3}=\frac{1}{x-2}, x≠0, \frac{3}{2}, 2$
- 解有理方程 $\frac{2}{(x-3)} + \frac{1}{x} = \frac{(x-1)}{(x-3)}$。
- 用因式分解法解下列二次方程:$\frac{5+x}{5-x}-\frac{5-x}{5+x}=3\frac{3}{4}, x ≠5, -5$
- 解关于x的方程:$\frac{1}{( x-1)( x-2)} +\frac{1}{( x-2)( x-3)} =\frac{2}{3} \ ,\ x\neq 1,2,3$
- 解:\( \frac{3 x}{5}+4+x-2=\frac{\frac{3 x}{5} \times x}{2} \)
- 用因式分解法解下列二次方程:$\frac{1}{x\ -\ 3}\ +\ \frac{2}{x\ -\ 2}\ =\ \frac{8}{x};\ x\ ≠\ 0,\ 2,\ 3$
- 解: $\frac{4 x-5}{6 x+3}=\frac{2 x-5}{3 x-2}$。
- 解下列线性方程:\( \frac{x}{2}-\frac{1}{5}=\frac{x}{3}+\frac{1}{4} \).