一个直角三角形的高比底边短7厘米。如果斜边是13厘米,请列出二次方程来求三角形的底边。


已知


一个直角三角形的高比底边短7厘米。斜边是13厘米。

要求


我们需要列出二次方程来求三角形的底边。

解答


设底边长为x厘米。

三角形的高 = x - 7 厘米

根据勾股定理,

$(x)^2+(x-7)^2=(13)^2$


$x^2+x^2+49-14x=169$

$2x^2-14x+49-169=0$

$2x^2-14x-120=0$

$x^2-7x-60=0$

$x^2-12x+5x-60=0$

$x(x-12)+5(x-12)=0$

$(x-12)(x+5)=0$

$x=12$ 或 $x=-5$

长度不能为负数。因此,x = 12厘米。

所求方程为$x^2-7x-60=0$,底边长为12厘米,三角形的高为(12-7)=5厘米。

更新于:2022年10月10日

75 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告
© . All rights reserved.