将以下表达式写成展开形式:\( (\frac{x}{y}+\frac{y}{z}+\frac{z}{x})^{2} \)
已知
\( (\frac{x}{y}+\frac{y}{z}+\frac{z}{x})^{2} \)
要求
我们需要将给定的表达式写成展开形式。
解答
我们知道,
$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$
因此,
$(\frac{x}{y}+\frac{y}{z}+\frac{z}{x})^{2}=(\frac{x}{y})^{2}+(\frac{y}{z})^{2}+(\frac{z}{x})^{2}+2 \times \frac{x}{y} \times \frac{y}{z}+2 \times \frac{y}{z} \times \frac{z}{x}+2 \times \frac{z}{x} \times \frac{x}{y}$
$=\frac{x^{2}}{y^{2}}+\frac{y^{2}}{z^{2}}+\frac{z^{2}}{x^{2}}+2 \frac{x}{z}+2 \frac{y}{x}+2 \frac{z}{y}$
因此,$(\frac{x}{y}+\frac{y}{z}+\frac{z}{x})^{2}=\frac{x^{2}}{y^{2}}+\frac{y^{2}}{z^{2}}+\frac{z^{2}}{x^{2}}+2 \frac{x}{z}+2 \frac{y}{x}+2 \frac{z}{y}$。
- 相关文章
- 求以下乘积:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- 化简以下每个表达式:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
- 求以下乘积:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- 将以下表达式写成展开形式:\( (2 x-y+z)^{2} \)
- 将以下表达式写成展开形式:\( (-3 x+y+z)^{2} \)
- 验证有理数加法的结合律,即 $(x + y) + z = x + (y + z)$,当:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 验证性质 \( x \times(y+z)=(x \times y)+(x \times z) \) 在给定 \( x,\ y \) 和 \( z \) 的值下是否成立。\( x=\frac{-5}{2}, y=\frac{1}{2} \) 和 \( z=-\frac{10}{7} \)>
- 将以下表达式写成展开形式:\( (x+2 y+4 z)^{2} \)
- 如果 \( 2^{x}=3^{y}=12^{z} \),证明 \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \)。
- 验证性质:$x \times(y + z) = x \times y + x \times z$,取:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 将以下表达式写成展开形式:\( (-2 x+3 y+2 z)^{2} \)
- 验证:\( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 验证:$x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。
- 求以下乘积。$\frac{1}{2} x y \times \frac{2}{3} x^{2} y z^{2}$
- 验证性质:$x \times (y \times z) = (x \times y) \times z$,取:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)