使用朴素方法计算离散傅里叶变换的 C++ 程序


在离散傅里叶变换 (DFT) 中,将函数的等间距采样有限列表转换成有限复正弦和系数列表。它们按频率排序,具有相同的采样值,将采样函数从其原始域(通常是时间或沿线的坐标)转换为频域。

算法

Begin
   Take a variable M and initialize it to some integer
   Declare an array function[M]
   For i = 0 to M-1 do
      function[i] = (((a * (double) i) + (b * (double) i)) - c)
   Done
   Declare function sine[M]
   Declare function cosine[M]
   for i =0 to M-1 do
      cosine[i] = cos((2 * i * k * PI) / M)
      sine[i] = sin((2 * i * k * PI) / M)
   Done
   Declare DFT_Coeff dft_value[k]
   for j = 0 to k-1 do
      for i = 0 to M-1 do
         dft_value.real += function[i] * cosine[i]
         dft_value.img += function[i] * sine[i]
      Done
   Done
   Print the value
End

示例代码

#include<iostream>
#include<math.h>
using namespace std;
#define PI 3.14159265
class DFT_Coeff {
   public:
   double real, img;
   DFT_Coeff() {
      real = 0.0;
      img = 0.0;
   }
};
int main(int argc, char **argv) {
   int M= 10;
   cout << "Enter the coefficient of simple linear function:\n";
   cout << "ax + by = c\n";
   double a, b, c;
   cin >> a >> b >> c;
   double function[M];
   for (int i = 0; i < M; i++) {
      function[i] = (((a * (double) i) + (b * (double) i)) - c);
      //System.out.print( " "+function[i] + " ");
   }
   cout << "Enter the max K value: ";
   int k;
   cin >> k;
   double cosine[M];
   double sine[M];
   for (int i = 0; i < M; i++) {
      cosine[i] = cos((2 * i * k * PI) / M);
      sine[i] = sin((2 * i * k * PI) / M);
   }
   DFT_Coeff dft_value[k];
   cout << "The coefficients are: ";
   for (int j = 0; j < k; j++) {
      for (int i = 0; i < M; i++) {
         dft_value[j].real += function[i] * cosine[i];
         dft_value[j].img += function[i] * sine[i];
      }
      cout << "(" << dft_value[j].real << ") - " << "(" << dft_value[j].img <<" i)\n";
   }
}

输出

Enter the coefficient of simple linear function:
ax + by = c
4 5 6
Enter the max K value: 10
The coefficients are:
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)
(345) - (-1.64772e-05 i)

更新日期:2019 年 7 月 30 日

3K+ 浏览量

开启你的 职业生涯

完成课程并获得认证

开始学习
广告