如果点\( \mathrm{A}(2,-4) \)与\( \mathrm{P}(3,8) \)和\( \mathrm{Q}(-10, y) \)等距,求\( y \)的值。也求距离\( \mathrm{PQ} \).
已知:
点\( \mathrm{A}(2,-4) \)与\( \mathrm{P}(3,8) \)和\( \mathrm{Q}(-10, y) \)等距。
要求:
我们必须找到\( y \)的值和距离\( \mathrm{PQ} \).
解答
A(2,-4)与P(3,8)和Q(-10, y)等距
这意味着:
AP=AQ
我们知道:
两点(x₁,y₁)和(x₂,y₂)之间的距离是:
d=\(\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
因此:
\(\sqrt{(2-3)^{2}+(-4-8)^{2}}=\sqrt{(2+10)^{2}+(-4-y)^{2}}\)
\(\sqrt{(-1)^{2}+(-12)^{2}}=\sqrt{(12)^{2}+(4+y)^{2}}\)
\(\sqrt{1+144}=\sqrt{144+16+y^{2}+8 y}\)
\(\sqrt{145}=\sqrt{160+y^{2}+8 y}\)
两边平方,我们得到:
145=160+y²+8y
y²+8y+160-145=0
y²+8y+15=0
y²+5y+3y+15=0
y(y+5)+3(y+5)=0
(y+5)(y+3)=0
如果y+5=0,则y=-5
如果y+3=0,则y=-3
P(3,8)和Q(-10, y)之间的距离是:
当y=-3时
PQ =\(\sqrt{(-10-3)^{2}+(y-8)^{2}}\)
=\(\sqrt{(-13)^{2}+(-3-8)^{2}}\)
=\(\sqrt{169+121}\)
=\(\sqrt{290}\)
当y=-5时,
PQ=\(\sqrt{(-13)^{2}+(-5-8)^{2}}\)
=\(\sqrt{169+169}\)
=\(\sqrt{338}\)
y的值为-3和-5。当y=-3时,PQ距离为\(\sqrt{290}\),当y=-5时,PQ距离为\(\sqrt{338}\).