找出能被22、25和30整除的最大五位数。
已知
数字 22、25 和 30
求解
能被 22、25 和 30 整除的最大五位数
解答
如果一个数能被 22、25 和 30 整除,那么它必须是这些数的倍数。
让我们找到能被 22、25 和 30 整除的最小数。这其实就是 22、25 和 30 的最小公倍数。
22、25 和 30 的最小公倍数 | |||
---|---|---|---|
2 | 22 | 25 | 30 |
5 | 11 | 25 | 15 |
3 | 11 | 5 | 3 |
11 | 11 | 5 | 1 |
5 | 1 | 5 | 1 |
1 | 1 | 1 |
$2 \times 5 \times 3 \times 11 \times 5 = 1650$
所以最小公倍数是 1650。
所需数字必须是 1650 的倍数。它也是 1650 的倍数中最小的五位数。
如果我们将 10000 除以 1650,余数为 100。
所以 9900 是 1650 的倍数。
9900 + 1650 = 11550。
11550 是 1650 的倍数中最小的五位数。
所以,答案是 11550。
广告