利用合适的性质,求下列各式的值
(a) \( (3 x+4 y)^{2} \)
(b) \( (0.2 x-0.3 y)^{2} \)
(c) \( (x+3)(x-5) \)
(d) \( \left(x-y^{2}\right)^{2} \)
要做的事
我们必须利用合适的性质,求出以下表达式的值。
(a) \( (3 x+4 y)^{2} \)
(b) \( (0.2 x-0.3 y)^{2} \)
(c) \( (x+3)(x-5) \)
(d) \( \left(x-y^{2}\right)^{2} \)
解答
我们知道:
$(a+b)^2=a^2+2ab+b^2$
$(a-b)^2=a^2-2ab+b^2$
$(a+b)(c+d)=ac+ad+bc+bd$
因此:
(a) $(3x+4y)^2=(3x)^2+2\times3x \times4y+(4y)^2$
$=9x^2+24xy+16y^2$
(b) $(0.2 x-0.3 y)^{2}=(0.2x)^2-2\times0.2x\times0.3y+(0.3y)^2$
$=0.04x^2-0.06xy+0.09y^2$
(c) $(x+3)(x-5)=x \times x+x \times (-5)+3\times x+3\times(-5)$
$=x^2-5x+3x-15$
$=x^2-2x-15$
(d) $ (x-y^{2})^{2}=(x)^2-2\times x \times y^2+(y^2)^2$
$=x^2-2xy^2+y^4$
- 相关文章
- 验证:(i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- 求下列二项式的积:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
- 利用合适的恒等式求下列各式的积:(i) \( (x+4)(x+10) \)(ii) \( (x+8)(x-10) \)(iii) \( (3 x+4)(3 x-5) \)(iv) \( \left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right) \)(v) \( (3-2 x)(3+2 x) \)
- 求下列各式的积:\( \left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right) \)
- 计算:\( \left(3 x^{2} y-5 x y^{2}\right) \)乘以\( \left(\frac{1}{5} x^{2}+\frac{1}{3} y^{2}\right) \)
- 求下列单项式的积。a. \( (-6) x^{2} \times 7 x y \)b. \( 2 a b \times(-6) a b \)c. \( \left(-4 x^{2} y^{2}\right) \times 3 x^{2} y^{2} \)d. \( 9 x y z \times 2 z^{3} \)
- 1. 因式分解表达式 \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 因式分解表达式 \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 验证 \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 求下列各式的积:\( \frac{7}{5} x^{2} y\left(\frac{3}{5} x y^{2}+\frac{2}{5} x\right) \)
- 当 $x=2, y=-1$ 时,求下列各式的值。\( \left(\frac{3}{5} x^{2} y\right) \times\left(\frac{-15}{4} x y^{2}\right) \times\left(\frac{7}{9} x^{2} y^{2}\right) \)
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 有一对线性方程组,其唯一解为 \( x=2, y=-3 \),该方程组是(A) \( x+y=-1 \)\( 2 x-3 y=-5 \)(B) \( 2 x+5 y=-11 \)\( 4 x+10 y=-22 \)(C) \( 2 x-y=1 \)\( 3 x+2 y=0 \)(D) \( x-4 y-14=0 \)\( 5 x-y-13=0 \)
- 如果 $x = -2$ 且 $y = 1$,利用恒等式求下列式的值:\( \left(4 y^{2}-9 x^{2}\right)\left(16 y^{4}+36 x^{2} y^{2}+81 x^{4}\right) \)
- 当 $x=2, y=-1$ 时,求下列各式的值。\( (2 x y) \times\left(\frac{x^{2} y}{4}\right) \times\left(x^{2}\right) \times\left(y^{2}\right) \)
- \( \left(\frac{x}{2}+\frac{3 y}{4}\right)\left(\frac{x}{2}+\frac{3 y}{4}\right) \)