通过在等式两边执行相同的运算来构造新的等式
$2 x+3=13$
已知
给定方程为 $2x+3 = 13$。
需要做
我们需要将方程两边都乘以 2。
解答
$2(2x+3) = 2(13)$
$2(2x) + 2(3) = 2(13)$
$4x+6 = 26$
新方程为 $4x+6 = 26$。
- 相关文章
- 通过执行给定操作(括号内)构造新的方程:(i) $ 2 x+3=13 $ [乘以 2 ](ii) $ 3 y-3=21 $ [加 5](iii) $5 x+14=24 $ [减 6](iv) $ 10 y+6=36 $ [除以 2]
- 通过因式分解解下列二次方程: $\frac{x\ +\ 3}{x\ +\ 2}\ =\ \frac{3x\ -\ 7}{2x\ -\ 3},\ x\ ≠\ -2,\ \frac{3}{2}$
- 通过因式分解解下列二次方程: $\frac{1}{x\ -\ 3}\ +\ \frac{2}{x\ -\ 2}\ =\ \frac{8}{x};\ x\ ≠\ 0,\ 2,\ 3$
- 通过因式分解解下列二次方程: $\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- 通过因式分解解下列二次方程: $\sqrt{3}x^2-2\sqrt{2}x-2\sqrt3=0$
- 进行如下除法运算:$x^3 - 3 x^2 + 5 x - 3$ 除以 $x^2 -2$
- 对给定方程进行因式分解。 : $2 x^{2} + 3 x + 1 = 0$
- 通过因式分解解下列二次方程: $\frac{x-2}{x-3}+\frac{x-4}{x-5}=\frac{10}{3}, x ≠3, 5$
- 通过因式分解解下列二次方程: $\frac{1}{x}\ –\ \frac{1}{x\ -\ 2}\ =\ 3$
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 通过因式分解解下列二次方程: $\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2x+3}{x-2}, x ≠ 1, -2, 2$
- 通过因式分解解下列二次方程: $\frac{x\ +\ 3}{x\ -\ 2}\ -\ \frac{1\ -\ x}{x}\ =\ \frac{17}{4},\ x\ ≠\ 0,\ 2$
- 求解方程 x: $4\sqrt{3} x^{2} +5x-2\sqrt{3} =0$
- 通过因式分解解下列二次方程: $\frac{4}{x}-3=\frac{5}{2x+3}, x ≠0,\frac{-3}{2}$
- 求解方程 解答:给定方程: $\frac{4}{x} -3=\frac{5}{2x+3} ;\ x\neq 0,-3/2,\ for\ x.$
开启您的 职业生涯
通过完成课程获得认证
开始学习