已知 $2\cos\theta - \sin\theta = x$ 且 $\cos\theta - 3\sin\theta = y$,证明 $2x^2 + y^2 - 2xy = 5$。
已知:$2\cos\theta - \sin\theta = x$ 且 $\cos\theta - 3\sin\theta = y$。
求证:$2x^2 + y^2 - 2xy = 5$。
解题步骤
根据已知条件:
$(2\cos\theta - \sin\theta) = x$ 且 $(\cos\theta - 3\sin\theta) = y$
将 $x$ 和 $y$ 的值代入方程:
左边 = $2x^2 + y^2 - 2xy$
$= 2(2\cos\theta - \sin\theta)^2 + (\cos\theta - 3\sin\theta)^2 - 2(2\cos\theta - \sin\theta)(\cos\theta - 3\sin\theta)$
$= 2(4\cos^2\theta - 4\cos\theta\sin\theta + \sin^2\theta) + (\cos^2\theta - 6\cos\theta\sin\theta + 9\sin^2\theta) - 2(2\cos^2\theta - 7\cos\theta\sin\theta + 3\sin^2\theta)$
$= 8\cos^2\theta - 8\cos\theta\sin\theta + 2\sin^2\theta + \cos^2\theta - 6\cos\theta\sin\theta + 9\sin^2\theta - 4\cos^2\theta + 14\cos\theta\sin\theta - 6\sin^2\theta$
$= 5\cos^2\theta + 5\sin^2\theta$
$= 5(\cos^2\theta + \sin^2\theta)$
$= 5(1) = 5$ $(\because \cos^2\theta + \sin^2\theta = 1)$
$=$ 右边