如果\( \cot \theta=\frac{1}{\sqrt{3}} \),求\( \frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta} \)的值。
已知
\( \cot \theta=\frac{1}{\sqrt{3}} \)
求解
我们需要计算\( \frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta} \)的值。
解答:
我们知道:
$\operatorname{cosec} ^{2} \theta=1+\cot ^{2} \theta$
$\sin ^{2} \theta=\frac{1}{\operatorname{cosec} ^{2} \theta}$
$=\frac{1}{1+\cot ^{2} \theta}$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{1+\cot ^{2} \theta}}$
$=\frac{1}{\sqrt{1+(\frac{1}{\sqrt3})^2}}$
$=\frac{1}{\sqrt{1+\frac{1}{3}}}$
$=\frac{1}{\sqrt{\frac{3+1}{3}}}$
$=\frac{1}{\sqrt{\frac{4}{3}}}$
$=\frac{1}{\frac{2}{\sqrt3}}$
$=\frac{\sqrt3}{2}$
$\cos \theta=\sqrt{1-\sin^2 \theta}$
$=\sqrt{1-(\frac{\sqrt3}{2})^2}$
$=\sqrt{\frac{4-3}{4}}$
$=\sqrt{\frac{1}{4}}$
$=\frac{1}{2}$
这意味着:
$\frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}=\frac{1-(\frac{1}{2})^2}{2-(\frac{\sqrt3}{2})^2}$
$=\frac{\frac{4-1}{4}}{\frac{2(4)-3}{4}}$
$=\frac{3}{8-3}$
$=\frac{3}{5}$
\( \frac{1- \cos^2 \theta}{2- \sin^2 \theta} \)的值为$\frac{3}{5}$。