如果$\displaystyle P\ =\ \begin{bmatrix}2 & 4\\ 3 & 5\end{bmatrix} \ 和\ Q\ =\ \begin{bmatrix}-2 & 2\\ 4 & 1\end{bmatrix}$,求矩阵R,使得$P - Q + R$为单位矩阵。


已知

$P=\begin{bmatrix} 2 & 4\\ 3 & 5 \end{bmatrix} \ 和\ Q=\begin{bmatrix} -2 & 2\\ 4 & 1 \end{bmatrix}$

$P - Q + R$


求解

我们需要求解矩阵R。


设 $ R=\begin{bmatrix} a & b\\ c & d \end{bmatrix}$

单位矩阵 $ I=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

$P-Q+R=I$ 

左边

$P-Q+R=\begin{bmatrix} 2 & 4\\ 3 & 5 \end{bmatrix} -\begin{bmatrix} -2 & 2\\ 4 & 1 \end{bmatrix} +\begin{bmatrix} a & b\\ c & d \end{bmatrix}$

$=\begin{bmatrix} 2-( -2) +a & 4-2+b\\ 3-4+c & 5-1+d \end{bmatrix}$

$ =\begin{bmatrix} 2+2+a & 2+b\\ -1+c & 4+d \end{bmatrix}$

$ =\begin{bmatrix} 4+a & 2+b\\ c-1 & 4+d \end{bmatrix}$

右边

$I=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

$\begin{bmatrix} 4+a & 2+b\\ c-1 & 4+d \end{bmatrix} =\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

这意味着:

$4+a=1$

$a=1-4=-3$

$2+b=0$

$b=-2$

$c-1=0$

$c=1$

$4+d=1$

$d=1-4=-3$

因此:

$R=\begin{bmatrix} -3 & -2\\ 1 & -3 \end{bmatrix}$。

更新于:2022年10月10日

浏览量:53

开启你的职业生涯

完成课程获得认证

开始学习
广告