如果分数 \( \frac{97}{19} \) 的连分数形式为 \( w+\frac{1}{x+\frac{1}{y}} \),其中 \( w, x, y \) 为整数,则求 \( w+x+y \) 的值。
给定 $\frac{97}{19}$ 的连分数形式为
$w + \frac{1}{x + \frac{1}{y}}$,其中 w、x 和 y 为整数。
求 $w + x + y$ 的值
解答
$\frac{97}{19}$ 的连分数形式为
$\frac{97}{19}$ = $5 + \frac{2}{19}$ = $5 + \frac{1}{\frac{19}{2}}$ = $5 + \frac{1}{9+ \frac{1}{2}}$ = $w + \frac{1}{x+ \frac{1}{y}}$
因此,比较可得
$w = 5, x = 9, y = 2$
所以 $w + x + y = 5 + 9 + 2 = 16$ 或
因此,$w + x + y = 16$
- 相关文章
- 如果 $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$,求 x 和 y 的值。
- 化简: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \)。
- 化简下列式子:$\frac{x^{-1}+y^{-1}}{x^{-1}}+\frac{x^{-1}-y^{-1}}{x^{-1}}$
- 解下列方程组:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- 解下列方程组:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- 将下列方程组化为线性方程组求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 解下列方程组:$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$, 其中 $x≠-1$ 且 $y≠1$
- \求 $(x +y) \div (x - y)$ 的值。如果,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 解下列方程组: $\frac{2}{x}\ +\ \frac{5}{y}\ =\ 1$ $\frac{60}{x}\ +\ \frac{40}{y}\ =\ 19$
- 解下列方程组:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
- 解下列方程组:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- 验证: $x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 且 $z=\frac{1}{4}$。
- 如果 \( 2^{x}=3^{y}=6^{-z} \),证明 \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \)。
- 化简: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$。
- 用交叉相乘法解下列方程组: $\frac{5}{(x\ +\ y)}\ –\ \frac{2}{(x\ -\ y)}\ =\ -1$ $\frac{15}{(x\ +\ y)}\ +\ \frac{7}{(x\ –\ y)}\ =\ 10$