化简
\( \left(\frac{5}{8}\right)^{-7} \times\left(\frac{8}{5}\right)^{-4} \)


已知

\( \left(\frac{5}{8}\right)^{-7} \times\left(\frac{8}{5}\right)^{-4} \)

要求

我们需要化简\( \left(\frac{5}{8}\right)^{-7} \times\left(\frac{8}{5}\right)^{-4} \).

解:
我们知道,

$a^{-m}=\frac{1}{a^m}$

因此,

$(\frac{5}{8})^{-7} \times (\frac{8}{5})^{-4}=(\frac{8}{5})^7 \times (\frac{5}{8})^4$

$=\frac{8^7\times5^4}{5^7\times8^4}$

$=8^{7-4}\times5^{4-7}$

$=8^{3}\times5^{-3}$

$=\frac{8^3}{5^3}$

$=(\frac{8}{5})^3$

因此,$(\frac{5}{8})^{-7} \times (\frac{8}{5})^{-4}=(\frac{8}{5})^3$。

更新于: 2022年10月10日

46 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告
© . All rights reserved.