简化下列式子。
(a) \( (2 a+3)^{2}-(2 a-3)^{2} \)
(b) \( (3.5 x-1.5 y)^{2}-(1.5 x-3.5 y)^{2} \)
待办事项
我们必须使用合适的性质求解下列表达式的值。
(a) \( (2 a+3)^{2}-(2 a-3)^{2} \)
(b) \( (3.5 x-1.5 y)^{2}-(1.5 x-3.5 y)^{2} \)
解答
我们知道:
$(a+b)^2=a^2+2ab+b^2$
$(a-b)^2=a^2-2ab+b^2$
因此:
(a) $(2 a+3)^{2}-(2 a-3)^{2}=(2a)^2+2\times2a \times3+(3)^2-[(2a)^2-2\times2a\times3+(3)^2]$
$=4a^2+12a+9-[4a^2-12a+9]$
$=4a^2-4a^2+12a+12a+9-9$
$=24a$
(b) $(3.5 x-1.5 y)^{2}-(1.5 x-3.5 y)^{2}=(3.5x)^2-2\times3.5x \times1.5y+(1.5y)^2-[(1.5x)^2-2\times1.5x\times3.5y+(3.5y)^2]$
$=12.25x^2-10.5xy+2.25y^2-[2.25x^2-10.5xy+12.25y^2]$
$=12.25x^2-2.25x^2-10.5xy+10.5xy+2.25y^2-12.25y^2$
$=10x^2-10y^2$
- 相关文章
- 化简:$2(x^2 - y^2 +xy) -3(x^2 +y^2 -xy)$。
- 简化下列每个表达式:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
- 简化下列式子:\( \left(\frac{x^{2} y^{2}}{a^{2} b^{3}}\right)^{n} \)
- 因式分解:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- 简化下列式子:\( \left(2 x^{-2} y^{3}\right)^{3} \)
- 简化下列每个式子:\( (2 x-5 y)^{3}-(2 x+5 y)^{3} \)
- 合并下列代数式:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 化简:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- 1. 因式分解表达式 \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 因式分解表达式 \( xy-x-y+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 化简:$(x^2 + y^2 - z^2)^2 - (x^2 - y^2 + z^2)^2$
- 验证:(i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- 求下列单项式的乘积。a. \( (-6) x^{2} \times 7 x y \)b. \( 2 a b \times(-6) a b \)c. \( \left(-4 x^{2} y^{2}\right) \times 3 x^{2} y^{2} \)d. \( 9 x y z \times 2 z^{3} \)
- 计算下列式子的差:(i) 从 $12xy$ 中减去 $-5xy$ (ii) 从 $-7a^2$ 中减去 $2a^2$ (iii) 从 \( 3 a-5 b \) 中减去 \( 2 a-b \) (iv) 从 \( 4 x^{3}+x^{2}+x+6 \) 中减去 \( 2 x^{3}-4 x^{2}+3 x+5 \) (v) 从 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中减去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) (vi) 从 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中减去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) (vii) 从 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中减去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) (viii) 从 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中减去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).