用因式分解法解下列二次方程
$\frac{x-4}{x-5}+\frac{x-6}{x-7}=\frac{10}{3}, x ≠5,7$
已知
给定的二次方程为 $\frac{x-4}{x-5}+\frac{x-6}{x-7}=\frac{10}{3}, x ≠5,7$。
要求
我们必须用因式分解法解给定的二次方程。
解答
$\frac{x-4}{x-5}+\frac{x-6}{x-7}=\frac{10}{3}$
$\frac{(x-4)(x-7)+(x-6)(x-5)}{(x-5)(x-7)}=\frac{10}{3}$
$\frac{x^2-4x-7x+28+x^2-6x-5x+30}{x^2-5x-7x+35}=\frac{10}{3}$
$\frac{2x^2-22x+58}{x^2-12x+35}=\frac{10}{3}$
$3(2x^2-22x+58)=10(x^2-12x+35)$ (交叉相乘)
$3\times2(x^2-11x+29)=10(x^2-12x+35)$
$3x^2-33x+87=5x^2-60x+175$
$(5-3)x^2+(-60+33)x+175-87=0$
$2x^2-27x+88=0$
$2x^2-16x-11x+88=0$
$2x(x-8)-11(x-8)=0$
$(2x-11)(x-8)=0$
$2x-11=0$ 或 $x-8=0$
$2x-11=0$ 或 $x-8=0$
$2x=11$ 或 $x=8$
$x=\frac{11}{2}$ 或 $x=8$
$x$ 的值为 $\frac{11}{2}$ 和 $8$。
- 相关文章
- 用因式分解法解下列二次方程:$\frac{x-2}{x-3}+\frac{x-4}{x-5}=\frac{10}{3}, x ≠3, 5$
- 用因式分解法解下列二次方程:$\frac{5+x}{5-x}-\frac{5-x}{5+x}=3\frac{3}{4}, x ≠5, -5$
- 用因式分解法解下列二次方程:$\frac{x\ -\ 3}{x\ +\ 3}\ -\ \frac{x\ +\ 3}{x\ -\ 3}\ =\ \frac{48}{7},\ x\ ≠\ 3,\ -3$
- 用因式分解法解下列二次方程:$\frac{1}{x\ -\ 1}\ –\ \frac{1}{x\ +\ 5}\ =\ \frac{6}{7},\ x\ ≠\ 1,\ -5$
- 用因式分解法解下列二次方程:$\frac{2x}{x\ -\ 4}\ +\ \frac{2x\ -\ 5}{x\ -\ 3}\ =\ \frac{25}{3},\ x\ ≠\ 3,\ 4$
- 用因式分解法解下列二次方程:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- 用因式分解法解下列二次方程:$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- 用因式分解法解下列二次方程:$\frac{1}{x\ +\ 4}\ –\ \frac{1}{x\ -\ 7}\ =\ \frac{11}{30},\ x\ ≠\ 4,\ 7$
- 用因式分解法解下列二次方程:$\frac{x\ +\ 3}{x\ -\ 2}\ -\ \frac{1\ -\ x}{x}\ =\ \frac{17}{4},\ x\ ≠\ 0,\ 2$
- 用因式分解法解下列二次方程:$\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{5}{6}, x ≠1,-1$
- 用因式分解法解下列二次方程:$\frac{4}{x}-3=\frac{5}{2x+3}, x ≠0,\frac{-3}{2}$
- 用因式分解法解下列二次方程:$\frac{1}{x\ -\ 2}\ +\ \frac{2}{x\ -\ 1}\ =\ \frac{6}{x},\ x\ ≠\ 0$
- 用因式分解法解下列二次方程:$\frac{x\ +\ 3}{x\ +\ 2}\ =\ \frac{3x\ -\ 7}{2x\ -\ 3},\ x\ ≠\ -2,\ \frac{3}{2}$
- 用因式分解法解下列二次方程:$x\ –\ \frac{1}{x}\ =\ 3,\ x\ ≠\ 0$
- 用因式分解法解下列二次方程:$\frac{1}{x\ -\ 3}\ +\ \frac{2}{x\ -\ 2}\ =\ \frac{8}{x};\ x\ ≠\ 0,\ 2,\ 3$