验证以下情况中所示数字是否为相应多项式的零点:\( p(x)=x^{3}-6 x^{2}+11 x-6, x=1,2,3 \)
已知
\( p(x)=x^{3}-6 x^{2}+11 x-6, x=1,2,3 \)
需要做:
我们需要找到指示的数字是否为相应多项式的零点。
解答
要确定 $x=1,2,3$ 是否为 $p(x)$ 的零点,我们需要检查 $p(1)=0, p(2)=0$ 和 $p(3)=0$ 是否成立。
因此,
$p(1)=(1)^{3}-6(1)^{2}+11(1)-6$
$=1-6 \times 1+11 \times 1-6$
$=1-6+11-6$
$=12-12$
$=0$
$p(2)=(2)^{3}-6(2)^{2}+11 \times 2-6$
$=8-6 \times 4+22-6$
$=8-24+22-6$
$=30-30$
$=0$
$p(3)=(3)^{3}-6(3)^{2}+11 \times 3-6$
$=27-6 \times 9+33-6$
$=27-54+33-6$
$=60-60$
$=0$
因此,$x=1, 2, 3$ 是 $p(x)$ 的零点。
- 相关文章
- 验证以下情况中所示数字是否为相应多项式的零点:\( f(x)=x^{2}, x=0 \)
- 验证以下情况中所示数字是否为相应多项式的零点:\( f(x)=x^{2}-1, x=1,-1 \)
- 验证以下情况中所示数字是否为相应多项式的零点:\( f(x)=3 x+1, x=-\frac{1}{3} \)
- 验证以下情况中所示数字是否为相应多项式的零点:\( f(x)=2 x+1, x=\frac{1}{2} \)
- 验证以下情况中所示数字是否为相应多项式的零点:\( g(x)=3 x^{2}-2, x=\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}} \)
- 验证以下情况中所示数字是否为相应多项式的零点:\( f(x)=5 x-\pi, x=\frac{4}{5} \)
- 验证以下情况中所示数字是否为相应多项式的零点:\( f(x)=l x+m, x=-\frac{m}{l} \)
- 使用因式定理确定 \( g(x) \) 是否为 \( p(x) \) 的因式,在以下每种情况下:(i) \( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 \)(ii) \( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2 \)(iii) \( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \)
- 验证以下是否为对应多项式的零点。(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- 求以下二次多项式的零点,并验证零点与其系数之间的关系:$p(x)\ =\ x^2\ +\ 2\sqrt{2}x\ –\ 6$
- 在以下每种情况下求多项式的零点:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) 是实数。
- 以下多项式的次数是多少?$x^6 - 3 x^2+x^7 - 5x^3 + 6$
- 化简以下式子\( 4^{3} \times\left(x^{4}\right) \times 6 x^{3} \p 2 x^{2} \)
- 在以下每种情况下,将多项式 $p(x)$ 除以多项式 $g(x)$,并求出商和余数:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- 以下哪个不是多项式?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-\sqrt{2 x}+6$