将多项式 $p(x)$ 除以多项式 $g(x)$,并求出商和余数
(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$
(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$
(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$


要求:

我们必须将多项式 $p( x)$ 除以多项式 $g( x)$,并在每种情况下找到商和余数。

解答

(i) 如题给定,$( p(x)=x^{3}-3 x^{2}+5 x-3$, $g(x)=x^{2}-2$

用长除法将 $p( x)$ 除以 $g( x)$

$x^2-2$)$x^3-3x^2+5x-3$($x-3$

                $x^3-2x$

            ---------------------

                  $-3x^2+7x-3$

                  $-3x^2+6$

              --------------------

                           $7x-9$

商$=x-3$

余数$=7x-9$。

(ii) $p(x) = x^4 - 3x^2 + 4x + 5$

$g(x) = x^2+1 -x$

$x^2-x+1$)$x^4-3x^2+4x+5$($x^2+x-3$

                    $x^4+x^2-x^3$

                -------------------------

                             $x^3-4x^2+4x+5$

                            $x^3-x^2+x$

                       ---------------------------

                                   $-3x^2+3x+5$

                                   $-3x^2+3x-3$

                              ----------------------

                                                    $8$

                                                ---------

因此,商为 $x^2+x-3$,余数为 $8$。

(iii) $p(x) = x^4 - 5x + 6$

$g(x) = 2 -x^2$

$2-x^2$)$x^4-5x+6$($-x^2-2$

               $x^4-2x^2$

            ------------------

               $2x^2-5x+6$

               $2x^2-4$

          --------------------

                       $-5x+10$

因此,商为 $-x^2-2$,余数为 $-5x+10$。

更新时间: 2022 年 10 月 10 日

66 次浏览

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告