- Python数据科学教程
- Python数据科学 - 首页
- Python数据科学 - 入门
- Python数据科学 - 环境设置
- Python数据科学 - Pandas
- Python数据科学 - Numpy
- Python数据科学 - SciPy
- Python数据科学 - Matplotlib
- Python数据处理
- Python数据操作
- Python数据清洗
- Python处理CSV数据
- Python处理JSON数据
- Python处理XLS数据
- Python关系型数据库
- Python NoSQL数据库
- Python日期和时间
- Python数据整理
- Python数据聚合
- Python读取HTML页面
- Python处理非结构化数据
- Python分词
- Python词干提取和词形还原
- Python数据可视化
- Python图表属性
- Python图表样式
- Python箱线图
- Python热力图
- Python散点图
- Python气泡图
- Python 3D图表
- Python时间序列
- Python地理数据
- Python图数据
Python - 处理JSON数据
JSON文件以人类可读的格式将数据存储为文本。JSON代表JavaScript对象表示法。Pandas可以使用read_json函数读取JSON文件。
输入数据
通过将以下数据复制到记事本等文本编辑器中来创建JSON文件。将文件保存为.json扩展名,并选择文件类型为所有文件(*.*)。
{ "ID":["1","2","3","4","5","6","7","8" ], "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ] "Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ], "StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013", "7/30/2013","6/17/2014"], "Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"] }
读取JSON文件
Pandas库的read_json函数可用于将JSON文件读取到Pandas DataFrame中。
import pandas as pd data = pd.read_json('path/input.json') print (data)
当我们执行上述代码时,它会产生以下结果。
Dept ID Name Salary StartDate 0 IT 1 Rick 623.30 1/1/2012 1 Operations 2 Dan 515.20 9/23/2013 2 IT 3 Tusar 611.00 11/15/2014 3 HR 4 Ryan 729.00 5/11/2014 4 Finance 5 Gary 843.25 3/27/2015 5 IT 6 Rasmi 578.00 5/21/2013 6 Operations 7 Pranab 632.80 7/30/2013 7 Finance 8 Guru 722.50 6/17/2014
读取特定列和行
类似于我们在上一章中看到的读取CSV文件的方法,Pandas库的read_json函数也可以在将JSON文件读取到DataFrame后用于读取一些特定的列和特定的行。我们为此目的使用称为.loc()的多轴索引方法。我们选择显示某些行的Salary和Name列。
import pandas as pd data = pd.read_json('path/input.xlsx') # Use the multi-axes indexing funtion print (data.loc[[1,3,5],['salary','name']])
当我们执行上述代码时,它会产生以下结果。
salary name 1 515.2 Dan 3 729.0 Ryan 5 578.0 Rasmi
将JSON文件读取为记录
我们还可以将to_json函数与参数一起使用,以将JSON文件内容读取到各个记录中。
import pandas as pd data = pd.read_json('path/input.xlsx') print(data.to_json(orient='records', lines=True))
当我们执行上述代码时,它会产生以下结果。
{"Dept":"IT","ID":1,"Name":"Rick","Salary":623.3,"StartDate":"1\/1\/2012"} {"Dept":"Operations","ID":2,"Name":"Dan","Salary":515.2,"StartDate":"9\/23\/2013"} {"Dept":"IT","ID":3,"Name":"Tusar","Salary":611.0,"StartDate":"11\/15\/2014"} {"Dept":"HR","ID":4,"Name":"Ryan","Salary":729.0,"StartDate":"5\/11\/2014"} {"Dept":"Finance","ID":5,"Name":"Gary","Salary":843.25,"StartDate":"3\/27\/2015"} {"Dept":"IT","ID":6,"Name":"Rasmi","Salary":578.0,"StartDate":"5\/21\/2013"} {"Dept":"Operations","ID":7,"Name":"Pranab","Salary":632.8,"StartDate":"7\/30\/2013"} {"Dept":"Finance","ID":8,"Name":"Guru","Salary":722.5,"StartDate":"6\/17\/2014"}
广告