将以下每个二次三项式分解因式
(i) 12x2−17xy+6y2
(ii) 6x2−5xy−6y2
已知
给定的二次三项式为
(i) 12x2−17xy+6y2
(ii) 6x2−5xy−6y2
要求
我们必须对给定的二次三项式进行因式分解。
解答
代数表达式的因式分解
代数表达式的因式分解是指将表达式写成两个或多个因式的乘积。因式分解是分配律的逆运算。
当一个代数表达式写成质因数的乘积时,它就被完全分解了。
(i) 给定的表达式为 12x2−17xy+6y2。
我们可以通过拆分中间项来对给定的表达式进行因式分解。拆分中间项意味着我们必须将中间项重写为两个项的和或差。
这里,
x2 的系数为 12
x 的系数为 −17y
常数项为 6y2
12x2−17xy+6y2 可以写成,
12x2−17xy+6y2=12x2−9xy−8xy+6y2 [因为 −17xy=−9xy−8xy 且 12x2×6y2=(−9xy)×(−8xy)=72x2y2]
12x2−17xy+6y2=4x(3x−2y)−3y(3x−2y)
12x2−17xy+6y2=(4x−3y)(3x−2y)
因此,给定的表达式可以分解成 (4x−3y)(3x−2y)。
(ii) 给定的表达式为 6x2−5xy−6y2。
我们可以通过拆分中间项来对给定的表达式进行因式分解。拆分中间项意味着我们必须将中间项重写为两个项的和或差。
这里,
x2 的系数为 6
x 的系数为 −5y
常数项为 −6y2
6x2−5xy−6y2 可以写成,
6x2−5xy−6y2=6x2−9xy+4xy−6y2 [因为 −5xy=−9xy+4xy 且 6x2×(−6y2)=−9xy×4xy=−36x2y2]
6x2−5xy−6y2=3x(2x−3y)+2y(2x−3y)
6x2−5xy−6y2=(3x+2y)(2x−3y)
因此,给定的表达式可以分解成 (3x+2y)(2x−3y)。