将下列每个二次三项式分解因式
(i) 36a2+12abc−15b2c2
(ii) 15x2−16xyz−15y2z2
已知
给定的二次三项式是
(i) 36a2+12abc−15b2c2
(ii) 15x2−16xyz−15y2z2
要求
我们必须分解给定的二次三项式。
解答
代数表达式的因式分解
代数表达式的因式分解是指将表达式写成两个或多个因式的乘积。因式分解是分配律的逆运算。
当一个代数表达式写成质因式的乘积时,它就被完全分解了。
(i) 给定的表达式是 36a2+12abc−15b2c2。
我们可以通过拆分中间项来分解给定的表达式。拆分中间项意味着我们必须将中间项改写成两个项的和或差。
这里:
a2 的系数是 36
a 的系数是 12bc
常数项是 −15b2c2
36a2+12abc−15b2c2 可以写成:
36a2+12abc−15b2c2=36a2+30abc−18abc−15b2c2 [因为 12abc=30abc−18abc 且 36a2×(−15b2c2)=30abc×(−18abc)=−540a2b2c2]
36a2+12abc−15b2c2=6a(6a+5bc)−3bc(6a+5bc)
36a2+12abc−15b2c2=(6a−3bc)(6a+5bc)
36a2+12abc−15b2c2=2(3a−bc)(6a+5bc) (提取公因数 2)
因此,给定的表达式可以分解为 2(3a−bc)(6a+5bc)。
(ii) 给定的表达式是 15x2−16xyz−15y2z2。
我们可以通过拆分中间项来分解给定的表达式。拆分中间项意味着我们必须将中间项改写成两个项的和或差。
这里:
x2 的系数是 15
x 的系数是 −16yz
常数项是 −15y2z2
15x2−16xyz−15y2z2 可以写成:
15x2−16xyz−15y2z2=15x2−25xyz+9xyz−15y2z2 [因为 −16xyz=−25xyz+9xyz 且 15x2×(−15y2z2)=−25xyz×9xyz=−225x2y2z2]
15x2−16xyz−15y2z2=5x(3x−5yz)+3yz(3x−5yz)
15x2−16xyz−15y2z2=(5x+3yz)(3x−5yz)
因此,给定的表达式可以分解为 (5x+3yz)(3x−5yz)。