时间卷积定理


卷积

两个信号 𝑥(𝑡) 和 ℎ(𝑡) 的卷积定义为:

$$\mathrm{y\left ( t \right )=x\left( t \right )\ast h\left ( t \right )=\int_{-\infty }^{\infty}x\left ( \tau \right )h\left ( t-\tau \right )d\tau}$$

这个积分也称为**卷积积分**。

时间卷积定理

**陈述** - 时间卷积定理指出,时域中的卷积等效于频域中其频谱的乘积。因此,如果两个时间信号的傅里叶变换给出为:

$$\mathrm{x_{1}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1} \left ( \omega \right )}$$

以及

$$\mathrm{x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{2} \left ( \omega \right )}$$

那么,根据时间卷积定理:

$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1} \left ( \omega \right )\cdot X_{2} \left ( \omega \right )}$$

证明

根据傅里叶变换的定义,我们有:

$$\mathrm{F\left [ x\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt}$$

因此,

$$\mathrm{F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]e^{-j\omega t}dt}$$

此外,根据卷积的定义,我们有:

$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )x_{2}\left ( t-\tau \right )d\tau }$$

$$\mathrm{\therefore F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }\left [ \int_{-\infty }^{\infty }x_{1}\left ( \tau \right )x_{2}\left ( t-\tau \right )d\tau \right ]e^{-j\omega t}dt}$$

通过重新排列积分顺序,我们得到:

$$\mathrm{F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( t-\tau \right )e^{-j\omega t}dt \right ]d\tau}$$

在第二个积分中,用 (𝑡 − 𝜏) = 𝑢 替换,得到 𝑡 = 𝑢 + 𝜏 和 𝑑𝑡 = 𝑑𝑢

$$\mathrm{\therefore F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( u \right )e^{-j\omega \left ( u+\tau \right )}du \right ]d\tau}$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( u \right )e^{-j\omega u}du \right ]e^{-j\omega \tau }d\tau}$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right ) X_{2}\left ( \omega \right )e^{-j\omega \tau }d\tau =X_{2}\left ( \omega \right )\int_{-\infty}^{\infty}x_{1}\left ( \tau \right )e^{-j\omega \tau }d\tau }$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right ) X_{2}\left ( \omega \right )e^{-j\omega \tau }d\tau =X_{2}\left ( \omega \right )\int_{-\infty}^{\infty}x_{1}\left ( \tau \right )e^{-j\omega \tau }d\tau }$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=X_{2}\left ( \omega \right )X_{1}\left ( \omega \right )}$$

因此,它证明了:

$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1}\left ( \omega \right )\cdot X_{2}\left ( \omega \right )}$$

上述表达式称为**时间卷积定理**。

更新于: 2021年12月15日

4K+ 阅读量

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告