卷积法求逆Z变换


Z变换

Z变换是一种数学工具,用于将离散时间域中的差分方程转换为z域中的代数方程。数学上,如果$\mathit{x}\mathrm{\left(\mathit{n}\right)}$是离散时间函数,则其Z变换定义为:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$

用卷积法求逆Z变换

可以使用卷积定理计算逆Z变换。在卷积积分法中,给定的Z变换X(z)首先被分解为$\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}$和$\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}$,使得$\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}$。

然后分别求$\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}$和$\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}$的逆Z变换得到信号$\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}$和$\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}$。最后,通过对时域中的$\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}$和$\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}$进行卷积运算,得到函数$\mathit{x}\mathrm{\left(\mathit{n}\right)}$。

根据两个信号卷积的Z变换定义,我们有:

$$\mathrm{\mathit{Z}\mathrm{\left[ \mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}*\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)} \right ]}\:\mathrm{=}\:\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$

因此,逆Z变换可表示为:

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{Z}^{-\mathrm{1}}\mathrm{\left[\mathit{X}\mathrm{\left(\mathit{z}\right)}\right]}\:\mathrm{=}\:\mathit{Z}^{-\mathrm{1}}\mathrm{\left [ \mathit{Z\mathrm{\left\{\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}*\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)} \right\}}} \right ]}}$$

$$\mathrm{\therefore \mathit{Z}^{-\mathrm{1}}\mathrm{\left[\mathit{X}\mathrm{\left(\mathit{z}\right)}\right]}\:\mathrm{=}\:\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}*\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\sum_{\mathit{k}=0}^{\mathit{n}}\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{k}\right)}\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n-k}\right)}}$$

数值例子

使用卷积法,求以下Z变换的逆变换:

$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{z^{\mathrm{2}}}}{\mathrm{\left (\mathit{z}-3 \right )}\mathrm{\left( \mathit{z-\mathrm{4}}\right )}}}$$

解答

给定的Z变换函数为:

$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{z^{\mathrm{2}}}}{\mathrm{\left (\mathit{z}-3 \right )}\mathrm{\left( \mathit{z-\mathrm{4}}\right )}}}$$

令:

$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{3}} \right )}}\:\frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{4}} \right )}}}$$

分别对$\mathit{X}_{\mathrm{1}}\mathrm{\left(\mathit{z}\right)}$和$\mathit{X}_{\mathrm{2}}\mathrm{\left(\mathit{z}\right)}$求逆Z变换:

$$\mathrm{\mathit{Z}^{-\mathrm{1}}\mathrm{\left[\mathit{X_{\mathrm{1}}}\mathrm{\left(\mathit{z}\right)}\right]}\:\mathrm{=}\:\mathit{x_{\mathrm{1}}}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{Z^{-\mathrm{1}}}\mathrm{\left[ \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{3}} \right )}} \right ]}\:\mathrm{=}\:3^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$

类似地

$$\mathrm{\mathit{Z}^{-\mathrm{1}}\mathrm{\left[\mathit{X_{\mathrm{2}}}\mathrm{\left(\mathit{z}\right)}\right]}\:\mathrm{=}\:\mathit{x_{\mathrm{2}}}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{Z^{-\mathrm{1}}}\mathrm{\left[ \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{4}} \right )}} \right ]}\:\mathrm{=}\:4^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$

现在,使用卷积法求逆Z变换,我们有:

$$\mathrm{\mathit{Z}^{-\mathrm{1}}\mathrm{\left[\mathit{X}\mathrm{\left(\mathit{z}\right)}\right]}\:\mathrm{=}\:\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{n}\right)}*\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\sum_{\mathit{k}=0}^{\mathit{n}}\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{k}\right)}\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{n-k}\right)}}$$

$$\mathrm{\therefore \mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\sum_{\mathit{k}=0}^{\mathit{n}}3^{\mathit{k}}\mathit{u}\mathrm{\left(\mathit{k}\right)}4^{\mathit{n-k}}\mathit{u}\mathrm{\left(\mathit{n-k}\right)}\:\mathrm{=}\:\sum_{\mathit{k}=0}^{\mathit{n}}3^{\mathit{k}}\mathit{u}\mathrm{\left(\mathit{k}\right)}\:\mathrm{\left ( \frac{4^{\mathit{n}}}{4^{\mathit{k}}} \right )}\mathit{u}\mathrm{\left ( \mathit{n-k} \right )}}$$

$$\mathrm{\Rightarrow \mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:4^{\mathit{n}}\sum_{\mathit{k}=0}^{\mathit{n}}\mathrm{\left( \frac{3^{\mathit{k}}}{4^{\mathit{k}}} \right )}\:\mathrm{=}\:4^{\mathit{n}}\sum_{\mathit{k}=0}^{\mathit{n}}\mathrm{\left ( \frac{3}{4} \right )}^{\mathit{k}}}$$

$$\mathrm{\Rightarrow \mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:4^{\mathit{n}}\mathrm{\left [ \frac{1-\mathrm{\left ( \frac{3}{4} \right )}^{\mathit{n}+1}}{1-\mathrm{\left ( \frac{3}{4} \right )}} \right ]}\:\mathrm{=}\:4^{\mathit{n}+1}\mathrm{\left [ 1-\mathrm{\left ( \frac{3}{4} \right )}^{\mathit{n}+1} \right ]}}$$

$$\mathrm{\therefore \mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:4^{\mathit{n}+1}\mathit{u}\mathrm{\left(\mathit{n}\right)}-3^{\mathit{n}+1}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$

更新于:2022年1月29日

5K+浏览量

启动你的职业生涯

完成课程获得认证

开始学习
广告