信号与系统 – Z 反变换的部分分式展开法
Z 反变换
**Z 反变换**被定义为从其 Z 变换 $\mathit{X}\mathrm{\left(\mathit{z}\right)}$ 找到时域信号 $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ 的过程。Z 反变换表示为 -
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{Z}^{-\mathrm{1}}\mathrm{\left[\mathit{X}\mathrm{\left(\mathit{z}\right)}\right]}}$$
使用部分分式展开法求 Z 反变换
为了使用部分分式展开法确定 $\mathit{X}\mathrm{\left(\mathit{z}\right)}$ 的 Z 反变换,$\mathit{X}\mathrm{\left(\mathit{z}\right)}$ 的分母必须采用因式分解的形式。在这种方法中,我们得到的是 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 而不是 $\mathit{X}\mathrm{\left(\mathit{z}\right)}$ 的部分分式展开。这是因为时域序列的 Z 变换在其分子中具有 Z。
只有当 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 是一个真有理函数时,才能应用部分分式展开法,即其分母的阶数大于其分子的阶数。
如果 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 不是真函数,则在应用部分分式法之前,应将其写成多项式和真函数的形式。
部分分式法的一个缺点是,$\mathit{X}\mathrm{\left(\mathit{z}\right)}$ 的分母必须采用因式分解的形式。一旦将 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 作为真函数获得,则使用标准 Z 变换对和 Z 变换的性质,可以得到每个部分分式的 Z 反变换。
令一个有理函数 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 表示为 -
$$\mathrm{\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{\mathit{N}\mathrm{\left(\mathit{z} \right)}}{\mathit{D}\mathrm{\left( \mathit{z}\right)}}\:\mathrm{=}\: \frac{\mathit{b}_{\mathrm{0}}\mathit{z}^{\mathit{m}}\mathrm{+}\mathit{b}_{\mathrm{1}}\mathit{z}^{\mathit{m}-\mathrm{1}}\mathrm{+}\mathit{b}_{\mathrm{2}}\mathit{z}^{\mathit{m}-\mathrm{2}}\mathrm{+}...\mathit{b}_{\mathit{m}}}{\mathit{z}^{\mathit{n}}\mathrm{+}\mathit{a_\mathrm{\mathrm{1}}z}^{\mathit{n}-\mathrm{1}}\mathrm{+}\mathit{a_\mathrm{\mathrm{2}}z}^{\mathit{n}-\mathrm{2}}\mathrm{+}...\mathit{a}_{\mathit{n}}}}$$
当分子的阶数小于分母的阶数时,即m <n,则 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 是一个真函数。如果 $\mathit{m}\geq \mathit{n}$,则 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 不是真函数,则应写成 -
$$\mathrm{\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\mathit{c}_{\mathrm{0}}\mathit{z}^{\mathit{n-m}}\:\mathrm{+}\:\mathit{c}_{\mathrm{1}}\mathit{z}^{\mathit{n-m}-\mathrm{1}}\:\mathrm{+}\:...\mathrm{+}\:\mathit{c}_{\mathit{n-m}}\:\mathrm{+}\:\frac{\mathit{N}_{\mathrm{1}}\mathrm{\left(\mathit{z} \right)}}{\mathit{D}\mathrm{\left( \mathit{z}\right)}}}$$
其中,$\mathrm{\left[\mathit{c}_{\mathrm{0}}\mathit{z}^{\mathit{n-m}}\:\mathrm{+}\:\mathit{c}_{\mathrm{1}}\mathit{z}^{\mathit{n-m}-\mathrm{1}}\:\mathrm{+}\:...\mathrm{+}\:\mathit{c}_{\mathit{n-m}}\right]}$ 是一个多项式,$\frac{N_{\mathrm{1}}\mathrm{\left(\mathit{z} \right)}}{\mathit{D}\mathrm{\left( \mathit{z}\right)}}$ 是真有理函数。
现在,对于真有理函数 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 有两种情况如下 -
情况一 - 当 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 具有所有不同的极点时 -
当 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 的所有极点都不同时,函数 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 可以展开成如下形式 -
$$\mathrm{\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{\mathit{C}_{\mathrm{1}}}{\mathit{z-K}_{\mathrm{1}}}\:\mathrm{+}\:\frac{\mathit{C}_{\mathrm{2}}}{\mathit{z-K}_{\mathrm{2}}}\:\mathrm{+}\:\frac{\mathit{C}_{\mathrm{3}}}{\mathit{z-K}_{\mathrm{3}}}\:\mathrm{+}\:...\:\mathrm{+}\:\frac{\mathit{C}_{\mathit{n}}}{\mathit{z-K}_{\mathit{n}}}}$$
这里,系数 $\mathit{C}_{\mathrm{1}},\mathit{C}_{\mathrm{2}},\mathit{C}_{\mathrm{3}},...,\mathit{C}_{\mathit{n}}$ 可以用下面给出的公式确定 -
$$\mathrm{\mathit{C}_{\mathit{i}}\:\mathrm{=}\:\mathrm{\left[ \mathrm{\left ( \mathit{z-K_{\mathit{i}}}\right)}\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\right]}_{\mathit{z=K_{\mathit{i}}}}\:;\mathrm{Where},\mathit{i}\:\mathrm{=}\:\mathrm{1,2,3..}}$$
情况二 - 当 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 具有 l 个重复极点,其余 (n-l) 个极点是简单的 -
考虑 $\mathit{p}^{\mathit{th}}$ 个极点重复了 l 次。那么,函数 $\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}$ 可以表示为,
$$\mathrm{\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{\mathit{C}_{\mathrm{1}}}{\mathit{z-K}_{\mathrm{1}}}\:\mathrm{+}\:\frac{\mathit{C}_{\mathrm{2}}}{\mathit{z-K}_{\mathrm{2}}}\:\mathrm{+}\:...\:\mathrm{+}\:\frac{\mathit{C}_{\mathit{p\mathrm{1}}}}{\mathit{z-K_{\mathit{p}}}}\:\mathrm{+}\:\frac{\mathit{C_{\mathit{p\mathrm{2}}}}}{\mathrm{\left( \mathit{z-\mathit{k_{p}}}\right )^{\mathrm{2}}}}\:\mathrm{+}\:...\:\mathrm{+}\:\frac{\mathit{C_{\mathit{p\mathit{l}}}}}{\mathrm{\left( \mathit{z-\mathit{k_{p}}}\right )^{\mathit{l}}}}}$$
其中,
$$\mathrm{\mathit{C}_{\mathit{pl}}\:\mathrm{=}\:\mathrm{\left[ \mathrm{\left ( \mathit{z-K_{\mathit{p}}}\right)}\frac{\mathit{l} \:\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\right]}_{\mathit{z=K_{\mathit{p}}}}}$$
此外,如果 Z 变换 $\mathit{X}\mathrm{\left(\mathit{z}\right)}$ 具有复极点,则部分分式可以表示为 -
$$\mathrm{\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{\mathit{C}_{\mathrm{1}}}{\mathit{z-K}_{\mathrm{1}}}\:\mathrm{+}\:\frac{\mathit{C}_{\mathrm{1}}^{*}}{\mathit{z-K}_{\mathrm{1}}^{*}}}$$
其中,$\mathit{C}_{\mathrm{1}}^{*}$ 是 $\mathit{C}_{\mathrm{1}}$ 的复共轭,$\mathit{K}_{\mathrm{1}}^{*}$ 是 $\mathit{K}_{\mathrm{1}}$ 的复共轭。因此,很明显,复极点会导致部分分式展开中出现复共轭系数。
数值示例
求以下 Z 变换的逆 Z 变换
$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{z}^{-\mathrm{1}}}{\mathrm{2-3\mathit{z^{-\mathrm{1}}\mathrm{+}}}\mathit{z}^{-\mathrm{2}}};\:\mathrm{ROC}\rightarrow \left|\mathit{z} \right|>\:\mathrm{1}}$$
解答
给定的 Z 变换为,
$$\mathrm{\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{z}^{-\mathrm{1}}}{\mathrm{2-3\mathit{z^{-\mathrm{1}}\mathrm{+}}}\mathit{z}^{-\mathrm{2}}}}$$
$$\mathrm{\Rightarrow \mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{z}}{\mathrm{2}\mathit{z}^{\mathrm{2}}-\mathrm{3\mathit{z}}\mathrm{+}\mathrm{1}}\:\mathrm{=}\:\frac{\mathit{z}}{\mathrm{2}\mathrm{\left[ \mathit{z^{\mathrm{2}}-\mathrm{\left ( \frac{3 z}{2} \right)}\mathrm{+}\mathrm{\left ( \frac{1}{2} \right )}} \right ]}}}$$
$$\mathrm{\Rightarrow \mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\frac{1}{2}\mathrm{\left\{ \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}}\right)}\mathrm{\left[ \mathit{z}-\mathrm{\left(\frac{1}{2}\right)} \right]}}\right\}}}$$
通过进行部分分式展开,我们得到,
$$\mathrm{\Rightarrow \frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{\mathit{A}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}}\:\mathrm{+}\:\frac{\mathit{B}}{\mathrm{\left [ \mathit{z-\mathrm{\left ( \frac{1}{2} \right )}} \right ]}}}$$
其中,A 和 B 如下确定 -
$$\mathrm{\mathit{A}\:\mathrm{=}\:\mathrm{\left [ \mathrm{\left ( \mathit{z-\mathrm{1}} \right )}\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}} \right ]}_{\mathit{z=\mathrm{1}}}}$$
$$\mathrm{\mathrm{=}\:\mathrm{\left(\mathit{z-\mathrm{1}}\right)}\mathrm{\left[ \frac{1}{2} \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}}\right)}\mathrm{\left[ \mathit{z}-\mathrm{\left(\frac{1}{2}\right)} \right]}}\right]}_{\mathit{z=\mathrm{1}}}}$$
$$\mathrm{\mathrm{=}\:\frac{1}{2}\mathrm{\left[\frac{1}{1-\mathrm{\left ( \frac{1}{2}\right)}}\right]}\:\mathrm{=}\:\mathrm{1}}$$
类似地,
$$\mathrm{\mathit{B}\:\mathrm{=}\:\mathrm{\left [ \mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}\frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}} \right ]}_{\mathit{z=}\frac{1}{2}}}$$
$$\mathrm{\mathrm{=}\:\mathrm{\left(\mathit{z}-\frac{1}{2}\right)}\mathrm{\left[ \frac{1}{2} \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}}\right)}\mathrm{\left[ \mathit{z}-\mathrm{\left(\frac{1}{2}\right)} \right]}}\right]}_{\mathit{z}=\frac{1}{2}}}$$
$$\mathrm{\mathrm{=}\:\frac{1}{2}\mathrm{\left[\frac{1}{\mathrm{\left ( \frac{1}{2}\right)}-\mathrm{1}}\right]}\:\mathrm{=}\:\mathrm{-1}}$$
$$\mathrm{\therefore \frac{\mathit{X}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{1}{\mathrm{\left ( \mathit{z-\mathrm{1}}\right)}}-\frac{1}{\mathrm{\left [ \mathit{z}-\mathrm{\left(\frac{1}{2}\right )}\right]}}}$$
$$\mathrm{\Rightarrow \mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\:\frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}}\right)}}-\frac{\mathit{z}}{\mathrm{\left [ \mathit{z}-\mathrm{\left(\frac{1}{2}\right )}\right]}};\:\mathrm{ROC}\to \left|\mathit{z}\right|>\:\mathrm{1}}$$
因为给定 Z 变换的收敛域 (ROC) 为 $\left|\mathit{z}\right|$ > 1,因此这两个序列都必须是因果的。因此,通过取逆 Z 变换,我们得到,
$$\mathrm{\mathit{Z}^{-\mathrm{1}}\mathrm{\left[ \mathit{X}\mathrm{\left(\mathit{z}\right)}\right]}\:\mathrm{=}\:\mathit{Z}^{-\mathrm{1}}\mathrm{\left [ \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}}\right)}}-\frac{\mathit{z}}{\mathrm{\left [ \mathit{z}-\mathrm{\left(\frac{1}{2}\right )}\right]}} \right ]}}$$
$$\mathrm{\therefore \mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathrm{\left [ \mathit{u}\mathrm{\left(\mathit{n}\right)}-\mathrm{\left( \frac{1}{2}\right)^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}} \right ]}}$$