验证以下每个数列是否为等差数列(AP),然后写出其接下来的三个项。
\( \sqrt{3}, 2 \sqrt{3}, 3 \sqrt{3}, \ldots \)
已知
已知数列为 \( \sqrt{3}, 2 \sqrt{3}, 3 \sqrt{3}, \ldots \)
要求
我们需要验证给定的数列是否为等差数列,并写出其接下来的三个项。
解答:
在给定的数列中,
$a_1=\sqrt{3}, a_2= 2\sqrt{3}, a_3=3\sqrt{3}$
$a_2-a_1=2\sqrt{3}-\sqrt{3}=\sqrt{3}$
$a_3-a_2=3\sqrt{3}-2\sqrt{3}=\sqrt{3}$
因此,
$a_2-a_1=a_3-a_2$
给定的数列是等差数列。
$d=\sqrt{3}$
$a_4=a_3+d=3\sqrt{3}+\sqrt{3}=4\sqrt{3}$
$a_5=a_4+d=4\sqrt{3}+\sqrt{3}=5\sqrt{3}$
$a_6=a_5+d=5\sqrt{3}+\sqrt{3}=6\sqrt{3}$
给定数列的接下来的三个项是 $4\sqrt3, 5\sqrt3$ 和 $6\sqrt3$。
- 相关文章
- 验证以下每个数列是否为等差数列,然后写出其接下来的三个项。\( 5, \frac{14}{3}, \frac{13}{3}, 4, \ldots \)
- 验证以下每个数列是否为等差数列(AP),然后写出其接下来的三个项。\( a, 2 a+1,3 a+2,4 a+3, \ldots \)
- 化简以下每个表达式:(i) \( (3+\sqrt{3})(2+\sqrt{2}) \)(ii) \( (3+\sqrt{3})(3-\sqrt{3}) \)(iii) \( (\sqrt{5}+\sqrt{2})^{2} \)(iv) \( (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) \)
- 验证以下每个数列是否为等差数列,然后写出其接下来的三个项。\( 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \ldots \)
- 化简:\( \frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}+\frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}} \)
- 以下哪些数列构成等差数列?说明你的答案。\( \sqrt{3}, \sqrt{12}, \sqrt{27}, \sqrt{48}, \ldots \)
- 因式分解以下每个表达式:\( 2 \sqrt{2} a^{3}+3 \sqrt{3} b^{3}+c^{3}-3 \sqrt{6} a b c \)
- 化简以下表达式:$(\frac{\sqrt{3}}{\sqrt{2}+1})^2 + (\frac{\sqrt{3}}{\sqrt{2}-1})^2 +(\frac{\sqrt{2}}{\sqrt{3}})^2 $
- 化简以下表达式:$(3 + \sqrt{3})(2 + \sqrt{2})$
- 有理化分母并化简:\( \frac{2 \sqrt{3}-\sqrt{5}}{2 \sqrt{2}+3 \sqrt{3}} \)
- 化简以下表达式:\( (3+\sqrt{3})(3-\sqrt{3}) \)
- 以下哪些是等差数列?如果它们构成等差数列,求出公差 $d$ 并写出另外三个项。(i) \( 2,4,8,16, \ldots \)(ii) \( 2, \frac{5}{2}, 3, \frac{7}{2}, \ldots \)(iii) \( -1.2,-3.2,-5.2,-7.2, \ldots \)(iv) \( -10,-6,-2,2, \ldots \)(v) \( 3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots \)(vi) \( 0.2,0.22,0.222,0.2222, \ldots \)(vii) \( 0,-4,-8,-12, \ldots \)(viii) \( -\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots \)(ix) \( 1,3,9,27, \ldots \)(x) \( a, 2 a, 3 a, 4 a, \ldots \)(xi) \( a, a^{2}, a^{3}, a^{4}, \ldots \)(xii) \( \sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \)(xiii) \( \sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots \)(xiv) \( 1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots \)(xv) \( 1^{2}, 5^{2}, 7^{2}, 73, \ldots \)
- 有理化分母并化简:\( \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \)
- 化简:\( \frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}} \)
- 将以下每个表达式表示为有理分母:\( \frac{\sqrt{3}+1}{2 \sqrt{2}-\sqrt{3}} \)
开启你的 职业生涯
通过完成课程获得认证
开始学习