下列哪些数构成等差数列?请说明理由。
\( \sqrt{3}, \sqrt{12}, \sqrt{27}, \sqrt{48}, \ldots \)
已知
已知数列为 \( \sqrt{3}, \sqrt{12}, \sqrt{27}, \sqrt{48}, \ldots \)
要求
我们需要检查给定的数列是否为等差数列。
解答
在给定的数列中:
$a_1=\sqrt3, a_2=\sqrt{12}=\sqrt{4\times3}=2\sqrt3, a_3=\sqrt{27}=\sqrt{9\times3}=3\sqrt{3}, a_4=\sqrt{48}=\sqrt{16\times3}=4\sqrt{3}$
$a_2-a_1=2\sqrt3-\sqrt3=\sqrt3$
$a_3-a_2=3\sqrt3-2\sqrt3=\sqrt3$
$a_4-a_3=4\sqrt3-3\sqrt3=\sqrt3$
这里:
$a_2 - a_1 = a_3 - a_2=a_4 - a_3$
因此,给定的数列是等差数列。
- 相关文章
- 化简下列式子:$\frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}$。
- 解方程:$3 \sqrt{3}+2 \sqrt{27}+\frac{7}{\sqrt{3}}$。
- 化简:\( \frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}+\frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}} \)
- 验证下列每个数列是否为等差数列,然后写出其接下来的三项。\( \sqrt{3}, 2 \sqrt{3}, 3 \sqrt{3}, \ldots \)
- 证明:(i)\( \sqrt[3]{27} \times \sqrt[3]{64}=\sqrt[3]{27 \times 64} \)(ii) \( \sqrt[3]{64 \times 729}=\sqrt[3]{64} \times \sqrt[3]{729} \)(iii) \( \sqrt[3]{-125 \times 216}=\sqrt[3]{-125} \times \sqrt[3]{216} \)(iv) \( \sqrt[3]{-125 \times-1000}=\sqrt[3]{-125} \times \sqrt[3]{-1000} \)
- 填空:(i)\( \sqrt[3]{125 \times 27}=3 \times \)(ii) \( \sqrt[3]{8 \times \ldots}=8 \)(iii) \( \sqrt[3]{1728}=4 \times \)__(iv) \( \sqrt[3]{480}=\sqrt[3]{3} \times 2 \times \sqrt[3]{-} \)(v) \( \sqrt[3]{\square}=\sqrt[3]{7} \times \sqrt[3]{8} \)(vi) \( \sqrt[3]{-}=\sqrt[3]{4} \times \sqrt[3]{5} \times \sqrt[3]{6} \)(vii) \( \sqrt[3]{\frac{27}{125}}=\frac{}{5} \)(viii) \( \sqrt[3]{\frac{729}{1331}}=\frac{9}{-} \)(ix) \( \sqrt[3]{\frac{512}{-}}=\frac{8}{13} \)
- 有理化分母并化简:\( \frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}} \)
- 化简下列每个表达式:(i)\( (3+\sqrt{3})(2+\sqrt{2}) \)(ii) \( (3+\sqrt{3})(3-\sqrt{3}) \)(iii) \( (\sqrt{5}+\sqrt{2})^{2} \)(iv) \( (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) \)
- 化简: \( \frac{4 \sqrt{3}}{2-\sqrt{2}}-\frac{30}{4 \sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}} \)
- 计算下列式子:$\sqrt[3]{\sqrt{0.000729}}+\sqrt[3]{0.008}$
- 下列哪个是复合根式:(a)$4 \sqrt{3}$ (b)$\sqrt{3}$(c)$2 \sqrt[4]{5}$(d)$\sqrt{3}+\sqrt{5}-\sqrt{7}$
- 化简:\( \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} \)
- 下列哪些数构成等差数列?请说明理由。\( 0,2,0,2, \ldots \)
- 下列哪些数构成等差数列?请说明理由。\( 1,1,2,2,3,3, \ldots \)
- 下列哪些数构成等差数列?请说明理由。\( 11,22,33, \ldots \)