Z变换的Z域微分性质
Z变换
Z变换是一种数学工具,用于将离散时间域中的差分方程转换为z域中的代数方程。
数学上,如果$\mathit{x}\mathrm{\left(\mathit{n}\right)}$是一个离散时间函数,则其Z变换定义为:
$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$
Z变换的Z域微分性质
**命题** - Z变换的Z域微分性质指出,时域中的n倍乘法对应于z域中的微分。此性质也称为Z变换的n倍乘法性质。因此,如果
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{z}\right)};\:\:\mathrm{ROC}\:\mathrm{=}\:\mathit{R}}$$
则根据Z域微分性质:
$$\mathrm{\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)};\:\:\mathrm{ROC}\:\mathrm{=}\:\mathit{R}}$$
证明
根据Z变换的定义,我们有:
$$\mathrm{\mathit{Z}\mathrm{\left [\mathit{x}\mathrm{\left(\mathit{n}\right)} \right ]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z}^{-\mathit{n}}}$$
对上述等式两边关于z求导,我们得到:
$$\mathrm{\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{d}}{\mathit{dz}}\mathrm{\left [ \sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z}^{-\mathit{n}} \right ]}}$$
$$\mathrm{\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\frac{\mathit{d\mathrm{\left ( \mathit{z^{-n}} \right )}}}{\mathit{dz}}}$$
$$\mathrm{\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathrm{\left( -\mathit{n}\right )}\mathit{z}^{-n-\mathrm{1}}\:\mathrm{=}\:\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-n}}\mathrm{\left ( \mathit{-z}^{-\mathrm{1}} \right )}}$$
$$\mathrm{\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathrm{\left ( \mathit{-z}^{-\mathrm{1}} \right )}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-n}}\:\mathrm{=}\:\mathrm{\left ( \mathit{-z}^{-\mathrm{1}} \right )}\mathit{Z}\mathrm{\left[ \mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)} \right ]}}$$
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[ \mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)} \right ]}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$
同样,它可以表示为:
$$\mathrm{\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$
类似地,如果信号在时域中乘以$\mathit{n}^{\mathit{k}}$,则
$$\mathrm{\mathit{n}^{\mathit{k}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathrm{\left ( -1 \right )}^{\mathit{k}}\mathit{z}^{\mathit{k}}\frac{\mathit{d}^{\mathit{k}}}{\mathit{dz}^{\mathit{k}}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$
数值例子
求信号$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{n}^\mathrm{2}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$的Z变换。
解答
给定的信号是:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{n}^\mathrm{2}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$
由于单位阶跃序列的Z变换由下式给出:
$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\frac{\mathit{z}}{z-\mathrm{1}}}$$
现在,使用Z变换的n倍乘法性质$\mathrm{\left [ i.e,\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)} \right ]}$,我们得到:
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\left\{\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]} \right\}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathrm{\left(\frac{\mathit{z}}{z-\mathrm{1}} \right)}$$
$$\mathrm{\Rightarrow\mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\mathrm{\left [ \frac{\mathrm{\left ( \mathit{z}-\mathrm{1}\right)}\mathrm{\left( 1\right)}-\mathit{z}\mathrm{\left( 1\right)}}{\mathrm{\left(\mathit{z-\mathrm{1}}\right)}^{\mathrm{2}}} \right ]}}$$
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{2}}}}$$
再次使用Z变换的n倍乘法性质,我们得到:
$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\left\{\mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]} \right\}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathrm{\left[ \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{2}}}\right ]}}$$
$$\mathrm{\Rightarrow \mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\mathrm{\left[ \frac{\mathrm{\left ( \mathit{z}-\mathrm{1}\right)}^{\mathrm{2}}\mathrm{\left( 1\right)}-\mathrm{2}\mathit{z}\mathrm{\left( \mathit{z-\mathrm{1}}\right)}}{\mathrm{\left(\mathit{z-\mathrm{1}}\right)}^{\mathrm{4}}} \right ]}}$$
$$\mathrm{\Rightarrow\mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\: \mathit{-Z}\mathrm{\left [ \frac{\mathit{z-\mathrm{1}-\mathrm{2}\mathit{z}}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{3}}}\right ]}\:\mathrm{=}\:\mathit{-Z}\mathrm{\left [ \frac{\mathit{-z-\mathrm{1}}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{3}}}\right ]}}$$
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\: \frac{\mathit{z}\mathrm{\left ( \mathit{z}\mathrm{+}1 \right )}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{3}}}}$$