Z变换的乘法性质
Z变换
Z变换是一种数学工具,用于将离散时间域中的差分方程转换为z域中的代数方程。数学上,如果$\mathrm{\mathit{x\left ( n \right )}}$是一个离散时间函数,则它的Z变换定义为:
$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$
Z变换的乘法性质
说明 – Z变换的乘法性质指出,两个信号在时域中的乘法对应于z域中的复卷积。因此,乘法性质也称为Z变换的复卷积性质。所以,如果
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( n \right )\overset{ZT}{\leftrightarrow}X_{\mathrm{1}}\left ( z \right )\:\: \mathrm{and}\:\: x_{\mathrm{2}}\left ( n \right )\overset{ZT}{\leftrightarrow}X_{\mathrm{2}}\left ( z \right ) }}$$
那么,根据乘法性质:
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right )\overset{ZT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X_{\mathrm{1}}\left ( p \right )X_{\mathrm{2}}\left ( \frac{z}{p} \right )p^{\mathrm{-1}}dp}}$$
证明
根据Z变换的定义,我们有:
$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$
$$\mathrm{\mathit{\therefore Z\left [ x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }\left [x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right ) \right ]z^{-n}\; \; \; \cdot \cdot \cdot \left ( \mathrm{1} \right )}}$$
但是,根据逆Z变换的定义,我们有:
$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\, }\frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X\left ( z \right )z^{\left ( n-\mathrm{1} \right )}dz\; \; \cdot \cdot \cdot \left ( \mathrm{2} \right ) }}$$
将复变量z替换为p,得到:
$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\, }\frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X\left ( p \right )p^{\left ( n-\mathrm{1} \right )}dp\; \; \cdot \cdot \cdot \left ( \mathrm{3} \right ) }}$$
将式(3)中$\mathrm{\mathit{x_{\mathrm{1}}\left ( n \right )}}$的值代入式(1),得到:
$$\mathrm{\mathit{Z\left [ x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }\left [ \frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X_{\mathrm{1}}\left ( p \right )p^{\left ( n-\mathrm{1} \right )}dp \right ]x_{\mathrm{2}}\left ( n \right )z^{-n}}} $$
$$\mathrm{\mathit{\Rightarrow Z\left [ x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }\frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X_{\mathrm{1}}\left ( p \right )\left [\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x_{\mathrm{2}}\left ( n \right ) p^{n}p^{\mathrm{-1}}z^{-n} \right ]dp}} $$
$$\mathrm{\mathit{\Rightarrow Z\left [ x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }\frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X_{\mathrm{1}}\left ( p \right )\left [\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x_{\mathrm{2}}\left ( n \right ) \left ( p^{\mathrm{-1}}z \right )^{-n} \right ]p^{\mathrm{-1}}\, dp}}$$
$$\mathrm{\mathit{\therefore Z\left [ x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right ) \right ]\mathrm{\, =\, }\frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X_{\mathrm{1}}\left ( p \right ) X_{\mathrm{2}}\left ( \frac{z}{p} \right ) p^{\mathrm{-1}}\, dp}}$$
也可以写成:
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( n \right )x_{\mathrm{2}}\left ( n \right )\overset{ZT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j}\oint X_{\mathrm{1}}\left ( p \right ) X_{\mathrm{2}}\left ( \frac{z}{p} \right ) p^{\mathrm{-1}}\, dp}}$$