在给定图中,$AD$是三角形$ABC$的中线,$AM \perp BC$。证明:
(i) $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^{2}$
(ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$
(iii) $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$
"
已知
$AD$是三角形$ABC$的中线,$AM \perp BC$。
需要证明
我们需要证明
(i) $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^{2}$
(ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$
(iii) $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$
解答
(i) 在$\triangle \mathrm{AMC}$中,
$\angle \mathrm{AMC}=90^{\circ}$
根据勾股定理,
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MC}^{2}$
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+(\mathrm{MD}^{2}+\mathrm{DC}^{2})$ ($\mathrm{MC}=\mathrm{MD}+\mathrm{DC}$)
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+(\mathrm{MD}+\frac{1}{2} \mathrm{BC})^{2}$
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MD}^{2}+(\frac{\mathrm{BC}}{2})^{2}+2 \mathrm{MD} \times \frac{\mathrm{BC}}{2}$
$\mathrm{AC}^{2}=(\mathrm{AM}^{2}+\mathrm{MD}^{2})+\mathrm{MD} \times \mathrm{BC}+(\frac{\mathrm{BC}}{2})^{2}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{MD} \times \mathrm{BC}+(\frac{\mathrm{BC}}{2})^{2}$
证毕。
(ii) 在$\triangle \mathrm{AMB}$中,根据勾股定理,
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{BM}^{2}$
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+(\mathrm{BD}-\mathrm{MD})^{2}$
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+(\frac{\mathrm{BC}}{2}-\mathrm{MD})^{2}$
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{MD}^{2}+(\frac{\mathrm{BC}}{2})^{2}-\frac{2 \mathrm{BC}}{2} \times \mathrm{MD}$
$\mathrm{AB}^{2}=(\mathrm{AM}^{2}+\mathrm{MD}^{2})+(\frac{\mathrm{BC}}{2})^{2}-\mathrm{BC} \times \mathrm{MD}$
$\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{MD}+(\frac{\mathrm{BC}}{2})^{2}$
证毕。
(iii) 在$\triangle \mathrm{AMC}$中,
$\angle \mathrm{AMC}=90^{\circ}$
根据勾股定理,
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MC}^{2}$
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+(\mathrm{MD}^{2}+\mathrm{DC}^{2})$ ($\mathrm{MC}=\mathrm{MD}+\mathrm{DC}$)
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+(\mathrm{MD}+\frac{1}{2} \mathrm{BC})^{2}$
$\mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{MD}^{2}+(\frac{\mathrm{BC}}{2})^{2}+2 \mathrm{MD} \times \frac{\mathrm{BC}}{2}$
$\mathrm{AC}^{2}=(\mathrm{AM}^{2}+\mathrm{MD}^{2})+\mathrm{MD} \times \mathrm{BC}+(\frac{\mathrm{BC}}{2})^{2}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{MD} \times \mathrm{BC}+(\frac{\mathrm{BC}}{2})^{2}$......(i)
在$\triangle \mathrm{AMB}$中,根据勾股定理,
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{BM}^{2}$
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+(\mathrm{BD}-\mathrm{MD})^{2}$
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+(\frac{\mathrm{BC}}{2}-\mathrm{MD})^{2}$
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{MD}^{2}+(\frac{\mathrm{BC}}{2})^{2}-\frac{2 \mathrm{BC}}{2} \times \mathrm{MD}$
$\mathrm{AB}^{2}=(\mathrm{AM}^{2}+\mathrm{MD}^{2})+(\frac{\mathrm{BC}}{2})^{2}-\mathrm{BC} \times \mathrm{MD}$
$\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{MD}+(\frac{\mathrm{BC}}{2})^{2}$.........(ii)
将公式(i)和(ii)相加,我们得到:
$AC^{2}+AB^{2}=2AD^{2}+\frac{2 BC^{2}}{4}$
$AC^{2}+AB^{2}=2AD^{2}+\frac{BC^{2}}{2}$
证毕。