- Mixed numbers
- Home
- Writing a mixed number and an improper fraction for a shaded region
- Writing an improper fraction as a mixed number
- Writing a mixed number as an improper fraction
- Mixed number multiplication
- Multiplication of a mixed number and a whole number
- Division with a mixed number and a whole number
- Mixed number division
- Word problem involving multiplication or division with mixed numbers
Division with a mixed number and a whole number Online Quiz
Following quiz provides Multiple Choice Questions (MCQs) related to Division with a mixed number and a whole number. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.
Answer : A
Explanation
Step 1:
First, we write the mixed number $5\frac{1}{3}$ as an improper fraction.
$5\frac{1}{3} = \frac{\left ( 5 \times 3 + 1 \right )}{3} = \frac{16}{3}$; $3 = \frac{3}{1}$
Step 2:
$5\frac{1}{3} \div 3 = \frac{16}{3} \div \frac{3}{1} = \frac{16}{3} \times \frac{1}{3}$
Multiplying numerators and denominators
$\frac{16}{3} \times \frac{1}{3} = \frac{(16 \times 1)}{(3 \times 3)} = \frac{16}{9}$
Step 3:
$\frac{16}{9}$ can be simplified and written as follows
$\frac{16}{9} = 1\frac{7}{9}$
Step 4:
So, $5\frac{1}{3} \div 3 = 1\frac{7}{9}$
Answer : D
Explanation
Step 1:
First, we write the mixed number $9\frac{1}{4}$ as an improper fraction.
$9\frac{1}{4} = \frac{\left ( 9 \times 4 + 1 \right )}{4} = \frac{37}{4}$; $8 = \frac{8}{1}$
Step 2:
$9\frac{1}{4} \div 8 = \frac{37}{4} \div \frac{8}{1} = \frac{37}{4} \times \frac{1}{8}$
Multiplying numerators and denominators
$\frac{37}{4} \times \frac{1}{8} = \frac{(37 \times 1)}{(4 \times 8)} = \frac{37}{32}$
Step 3:
$\frac{37}{32}$ can be simplified and written as follows
$\frac{37}{32} = 1\frac{5}{32}$
Step 4:
So, $9\frac{1}{4} \div 8 = 1\frac{5}{32}$
Answer : B
Explanation
Step 1:
First, we write the mixed number $5\frac{2}{7}$ as an improper fraction.
$5\frac{2}{7} = \frac{\left ( 5 \times 7 + 2 \right )}{7} = \frac{37}{7}$
Step 2:
$5\frac{2}{7} \div 4 = \frac{37}{7} \div \frac{4}{1} = \frac{37}{7} \times \frac{1}{4}$
Multiplying numerators and denominators
$\frac{37}{7} \times \frac{1}{4} = \frac{(37 \times 1)}{(7 \times 4)} = \frac{37}{28}$
Step 3:
$\frac{37}{28}$ can be simplified and written as follows
$\frac{37}{28} = 1\frac{9}{28}$; So, $5\frac{2}{7} \div 4 = 1\frac{9}{28}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $9\frac{1}{8}$ as an improper fraction.
$9\frac{1}{8} = \frac{\left ( 9 \times 8 + 1 \right )}{8} = \frac{73}{8}$; $6 = \frac{6}{1}$
Step 2:
$9\frac{1}{8} \div 6 = \frac{73}{8} \div \frac{6}{1} = \frac{73}{8} \times \frac{1}{6}$
Multiplying numerators and denominators
$\frac{73}{8} \times \frac{1}{6} = \frac{(73 \times 1)}{(8 \times 6)} = \frac{73}{48}$
Step 3:
$\frac{73}{48}$ can be simplified and written as follows
$\frac{73}{48} = 1\frac{25}{48}$
Step 4:
So, $9\frac{1}{8} \div 6 = 1\frac{25}{48}$
Answer : B
Step 1:
First, we write the mixed number $10\frac{1}{6}$ as an improper fraction.
$10\frac{1}{6} = \frac{\left ( 10 \times 6 + 1 \right )}{6} = \frac{61}{6}$
Step 2:
$10\frac{1}{6} \div 9 = \frac{61}{6} \div \frac{9}{1} = \frac{61}{6} \times \frac{1}{9}$
Multiplying numerators and denominators
$\frac{61}{6} \times \frac{1}{9} = \frac{(61 \times 1)}{(6 \times 9)} = \frac{61}{54}$
Step 3:
$\frac{61}{54}$ can be simplified and written as follows
$\frac{61}{54} = 1\frac{7}{54}$
Step 4:
So, $10\frac{1}{6} \div 9 = 1\frac{7}{54}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $6\frac{2}{5}$ as an improper fraction.
$6\frac{2}{5} = \frac{\left ( 6 \times 5 + 2 \right )}{5} = \frac{32}{5}$
Step 2:
$6\frac{2}{5} \div 4 = \frac{32}{5} \div \frac{4}{1} = \frac{32}{5} \times \frac{1}{4}$
Multiplying numerators and denominators
$\frac{32}{5} \times \frac{1}{4} = \frac{(32 \times 1)}{(5 \times 4)} = \frac{32}{20}$
Step 3:
$\frac{32}{20}$ can be simplified and written as follows
$\frac{32}{20} = 1\frac{12}{20} = 1\frac{3}{5}$
Step 4:
So, $6\frac{2}{5} \div 4 = 1\frac{3}{5}$
Answer : A
Explanation
Step 1:
First, we write the mixed number $9\frac{1}{3}$ as an improper fraction.
$9\frac{1}{3} = \frac{\left ( 9 \times 3 + 1 \right )}{3} = \frac{28}{3}$; $5 = \frac{5}{1}$
Step 2:
$9\frac{1}{3} \div 5 = \frac{28}{3} \div \frac{5}{1} = \frac{28}{3} \times \frac{1}{5}$
Multiplying numerators and denominators
$\frac{28}{3} \times \frac{1}{5} = \frac{(28 \times 1)}{(3 \times 5)} = \frac{28}{15}$
Step 3:
$\frac{28}{15}$ can be simplified and written as follows
$\frac{28}{15} = 1\frac{13}{15}$
Step 4:
So, $9\frac{1}{3} \div 5 = 1\frac{13}{15}$
Answer : D
Explanation
Step 1:
First, we write the mixed number $7\frac{1}{4}$ as an improper fraction.
$7\frac{1}{4} = \frac{\left ( 7 \times 4 + 1 \right )}{4} = \frac{29}{4}$
Step 2:
$7\frac{1}{4} \div 6 = \frac{29}{4} \div \frac{6}{1} = \frac{29}{4} \times \frac{1}{6}$
Multiplying numerators and denominators
$\frac{29}{4} \times \frac{1}{6} = \frac{(29 \times 1)}{(4 \times 6)} = \frac{29}{24}$
Step 3:
$\frac{29}{24}$ can be simplified and written as follows
$\frac{29}{24} = 1\frac{5}{24}$; So, $7\frac{1}{4} \div 6 = 1\frac{5}{24}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $6\frac{2}{7}$ as an improper fraction.
$6\frac{2}{7} = \frac{\left ( 6 \times 7 + 2 \right )}{7} = \frac{44}{7}$; $5 = \frac{5}{1}$
Step 2:
$6\frac{2}{7} \div 5 = \frac{44}{7} \div \frac{5}{1} = \frac{44}{7} \times \frac{1}{5}$
Multiplying numerators and denominators
$\frac{44}{7} \times \frac{1}{5} = \frac{(44 \times 1)}{(7 \times 5)} = \frac{44}{35}$
Step 3:
$\frac{44}{35}$ can be simplified and written as follows
$\frac{44}{35} = 1\frac{9}{35}$
Step 4:
So, $6\frac{2}{7} \div 5 = 1\frac{9}{35}$
Answer : A
Explanation
Step 1:
First, we write the mixed number $11\frac{1}{8}$ as an improper fraction.
$11\frac{1}{8} = \frac{\left ( 11 \times 8 + 1 \right )}{8} = \frac{89}{8}$; $8 = \frac{8}{1}$
Step 2:
$11\frac{1}{8} \div 8 = \frac{89}{8} \div \frac{8}{1} = \frac{89}{8} \times \frac{1}{8}$
Multiplying numerators and denominators
$\frac{89}{8} \times \frac{1}{8} = \frac{(89 \times 1)}{(8 \times 8)} = \frac{89}{64}$
Step 3:
$\frac{89}{64}$ can be simplified and written as follows
$\frac{89}{64} = 1\frac{25}{64}$
Step 4:
So, $11\frac{1}{8} \div 8 = 1\frac{25}{64}$