- Mixed numbers
- Home
- Writing a mixed number and an improper fraction for a shaded region
- Writing an improper fraction as a mixed number
- Writing a mixed number as an improper fraction
- Mixed number multiplication
- Multiplication of a mixed number and a whole number
- Division with a mixed number and a whole number
- Mixed number division
- Word problem involving multiplication or division with mixed numbers
Mixed number multiplication Online Quiz
Following quiz provides Multiple Choice Questions (MCQs) related to Mixed number multiplication. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.
Answer : A
Explanation
Step 1:
First, we write the mixed number $2\frac{3}{5}$ as an improper fraction
$2\frac{3}{5} = \frac{\left ( 2 \times 5 + 3 \right )}{5} = \frac{13}{5}$
Step 2:
$2\frac{3}{5} \times \frac{3}{4} = \frac{13}{5} \times \frac{3}{4} = \frac{(13 \times 3)}{(5 \times 4)} = \frac{39}{20}$
Step 3:
$\frac{39}{20}$ can be written as a mixed number as follows
$\frac{39}{20} = 1\frac{19}{20}$; So, $2\frac{3}{5} \times \frac{3}{4} = 1\frac{19}{20}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $3\frac{1}{5}$ as an improper fraction
$3\frac{1}{5} = \frac{\left ( 3 \times 5 + 1 \right )}{5} = \frac{16}{5}$
Step 2:
$3\frac{1}{5} \times \frac{3}{4} = \frac{16}{5} \times \frac{3}{4}$
Cross cancelling 16 and 4 we get
$\frac{16}{5} \times \frac{3}{4} = \frac{4}{5} \times \frac{3}{1} = \frac{(4 \times 3)}{(5 \times 1)} = \frac{12}{5}$
Step 3:
$\frac{12}{5}$ can be written as a mixed number as follows
$\frac{12}{5} = 2\frac{2}{5}$; So, $3\frac{1}{5} \times \frac{3}{4} = 2\frac{2}{5}$
Answer : B
Explanation
Step 1:
First, we write the mixed number $4\frac{2}{3}$ as an improper fraction
$4\frac{2}{3} = \frac{\left ( 4 \times 3 + 2 \right )}{3} = \frac{14}{3}$
Step 2:
$4\frac{2}{3} \times \frac{3}{5} = \frac{14}{3} \times \frac{3}{5}$
Cross cancelling 3 and 3 we get
$\frac{14}{3} \times \frac{3}{5} = \frac{14}{1} \times \frac{1}{5} = \frac{(14 \times 1)}{(1 \times 5)} = \frac{14}{5}$
Step 3:
$\frac{14}{5}$ can be written as a mixed number as follows
$\frac{14}{5} = 2\frac{4}{5}$; So, $4\frac{2}{3} \times \frac{3}{4} = 2\frac{4}{5}$
Answer : D
Explanation
Step 1:
First, we write the mixed number $3\frac{3}{4}$ as an improper fraction
$3\frac{3}{4} = \frac{\left ( 3 \times 4 + 3 \right )}{4} = \frac{15}{4}$
Step 2:
$3\frac{3}{4} \times \frac{3}{4} = \frac{15}{4} \times \frac{3}{4} = \frac{(15 \times 3)}{(4 \times 4)} = \frac{45}{16}$
Step 3:
$\frac{45}{16}$ can be written as a mixed number as follows
$\frac{45}{16} = 2\frac{13}{16}$; So, $3\frac{3}{4} \times \frac{3}{4} = 2\frac{13}{16}$
Answer : A
Explanation
Step 1:
First, we write the mixed number $6\frac{2}{3}$ as an improper fraction
$6\frac{2}{3} = \frac{\left ( 6 \times 3 + 2 \right )}{3} = \frac{20}{3}$
Step 2:
$6\frac{2}{3} \times \frac{3}{7} = \frac{20}{3} \times \frac{3}{7}$
Cross cancelling 3 and 3 we get
$\frac{20}{3} \times \frac{3}{7} = \frac{20}{1} \times \frac{1}{7} = \frac{(20 \times 1)}{(1 \times 7)} = \frac{20}{7}$
Step 3:
$\frac{20}{7}$ can be written as a mixed number as follows
$\frac{20}{7} = 2\frac{6}{7}$; So, $6\frac{2}{3} \times \frac{3}{7} = 2\frac{6}{7}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $6\frac{3}{8}$ as an improper fraction
$6\frac{3}{8} = \frac{\left ( 6 \times 8 + 3 \right )}{8} = \frac{51}{8}$
Step 2:
$6\frac{3}{8} \times \frac{4}{5} = \frac{51}{8} \times \frac{4}{5}$
Cross cancelling 8 and 4 we get
$\frac{51}{8} \times \frac{4}{5} = \frac{51}{2} \times \frac{1}{5} = \frac{(51 \times 1)}{(2 \times 5)} = \frac{51}{10}$
Step 3:
$\frac{51}{10}$ can be written as a mixed number as follows
$\frac{51}{10} = 5\frac{1}{10}$; So, $6\frac{3}{8} \times \frac{4}{5} = 5\frac{1}{10}$
Answer : B
Explanation
Step 1:
First, we write the mixed number $8\frac{1}{4}$ as an improper fraction
$8\frac{1}{4} = \frac{\left ( 8 \times 4 + 1 \right )}{4} = \frac{33}{4}$
Step 2:
$8\frac{1}{4} \times \frac{2}{5} = \frac{33}{4} \times \frac{2}{5}$
Cross cancelling 4 and 2 we get
$\frac{33}{4} \times \frac{2}{5} = \frac{33}{2} \times \frac{1}{5} = \frac{(33 \times 1)}{(2 \times 5)} = \frac{33}{10}$
Step 3:
$\frac{33}{10}$ can be written as a mixed number as follows
$\frac{33}{10} = 3\frac{3}{10}$; So, $8\frac{1}{4} \times \frac{2}{5} = 3\frac{3}{10}$
Answer : D
Explanation
Step 1:
First, we write the mixed number $9\frac{4}{5}$ as an improper fraction.
$9\frac{4}{5} = \frac{\left ( 9 \times 5 + 4 \right )}{5} = \frac{49}{5}$
Step 2:
$9\frac{4}{5} \times \frac{5}{6} = \frac{49}{5} \times \frac{5}{6}$
$\frac{49}{5} \times \frac{5}{6} = \frac{49}{1} \times \frac{1}{6} = \frac{(49 \times 1)}{(1 \times 6)} = \frac{49}{6}$
Step 3:
$\frac{49}{6}$ can be written as a mixed number as follows
$\frac{49}{6} = 8\frac{1}{6}$; So, $9\frac{4}{5} \times \frac{5}{6} = 8\frac{1}{6}$
Answer : A
Explanation
Step 1:
First, we write the mixed number $4\frac{2}{3}$ as an improper fraction
$4\frac{2}{3} = \frac{\left ( 4 \times 3 + 2 \right )}{3} = \frac{14}{3}$
Step 2:
$4\frac{2}{3} \times \frac{3}{4} = \frac{14}{3} \times \frac{3}{4}$
Cross cancelling 3 and 3 and simplifying we get
$\frac{14}{3} \times \frac{3}{4} = \frac{7}{1} \times \frac{1}{2} = \frac{(7 \times 1)}{(1 \times 2)} = \frac{7}{2}$
Step 3:
$\frac{7}{2}$ can be written as a mixed number as follows
$\frac{7}{2} = 3\frac{1}{2}$; So, $4\frac{2}{3} \times \frac{3}{4} = 3\frac{1}{2}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $8\frac{3}{4}$ as an improper fraction
$8\frac{3}{4} = \frac{\left ( 8 \times 4 + 3 \right )}{4} = \frac{35}{4}$
Step 2:
$8\frac{3}{4} \times \frac{2}{5} = \frac{35}{4} \times \frac{2}{5}$
Cross cancelling 35 and 5 and simplifying we get
$\frac{35}{4} \times \frac{2}{5} = \frac{7}{2} \times \frac{1}{1} = \frac{(7 \times 1)}{(2 \times 1)} = \frac{7}{2}$
Step 3:
$\frac{7}{2}$ can be written as a mixed number as follows
$\frac{7}{2} = 3\frac{1}{2}$; So, $8\frac{3}{4} \times \frac{2}{5} = 3\frac{1}{2}$