Find the area of a triangle whose vertices are$(at_1^2, 2at_1), (at_2^2, 2at_2)$ and $(at_3^2, 2at_3)$


Given:

Vertices of a triangle are $(at_1^2, 2at_1), (at_2^2, 2at_2)$ and $(at_3^2, 2at_3)$.

To do:

We have to find the area of the given triangle.

Solution:

Let $A(at_1^2, 2at_1), B(at_2^2, 2at_2)$ and $C(at_3^2, 2at_3)$ be the vertices of a $\triangle ABC$.

We know that,

Area of a triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$ is given by, 

Area of $\Delta=\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]$

Therefore,

Area of triangle $ABC=\frac{1}{2}[a t_{1}^{2}(2 a t_{2}-2 a t_{3})+a t_{2}^{2}(2 a t_{3}-2 a t_{1})+a t_{3}^{2}(2 a t_{1}-2 a t_{2})]$

$=\frac{1}{2}[2 a^{2} t_{1}^{2} t_{2}-2 a^{2} t_{1}^{2} t_{3}+2 a^{2} t_{2}^{2} t_{3}-2 a^{2} t_{2}^{2}t{1}+2 a^{2} t_{3}^{2} t_{1}-2 a^{2} t_{3}^{2} t_{2}]$

$=\frac{1}{2} \times 2 a^{2}[t_{1}^{2} t_{2}-t_{1}^{2} t_{3}+t_{2}^{2} t_{3}-t_{2}^{2} t_{1}+t_{3}^{2} t_{1}-t_{3}^{2} t_{2}]$

$=a^{2}[t_{1}^{2}(t_{2}-t_{3})+t_{2}^{2}(t_{2}-t_{3})-t_{1}(t_{2}^{2}-t_{3}^{2})]$

$=a^{2}[t_{1}^{2}(t_{2}-t_{3})+t_{2} t_{3}(t_{2}-t_{3})-t_{1}(t_{2}+t_{3})(t_{2}-t_{3})]$

$=a^{2}(t_{2}-t_{3})[t_{1}^{2}+t_{2} t_{3}-t_{1} t_{2}-t_{1} t_{3}]$

$=a^{2}(t_{2}-t_{3})[t_{1}^{2}-t_{1} t_{2}-t_{1} t_{3}+t_{2} t_{3}]$

$=a^{2}(t_{2}-t_{3})[t_{1}(t_{1}-t_{2})-t_{3}(t_{1}-t_{2})]$

$=a^{2}(t_{2}-t_{3})(t_{1}-t_{2})(t_{1}-t_{3})$

$=a^{2}(t_{1}-t_{2})(t_{2}-t_{3})(t_{3}-t_{1})$

The area of the given triangle is $a^{2}(t_{1}-t_{2})(t_{2}-t_{3})(t_{3}-t_{1})$ sq. units.

Updated on: 10-Oct-2022

61 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements