一群鹿的一半在田里吃草,剩下的鹿的四分之三在附近玩耍,其余9只鹿在池塘里喝水。求这群鹿的总数。
已知:一群鹿的一半在田里吃草,剩下的鹿的四分之三在附近玩耍,其余9只鹿在池塘里喝水。
要求:求这群鹿的总数。
解答
设鹿的总数为 $x$
鹿群的一半为 $\frac{x}{2}$
剩余鹿群的四分之三为 $( \frac{x}{2})( \frac{3}{4})=\frac{3x}{8}$
$\therefore$ 剩余的鹿为 9
$\Rightarrow x=( \frac{x}{2})+( \frac{3x}{8})+9$
$\Rightarrow x=\frac{( 4x+3x+72)}{8}$
$\Rightarrow 8x=7x+72$
$\Rightarrow 8x-7x=72$
$\Rightarrow x=72$
$\therefore$ 鹿的总数为 72。
- 相关文章
- 一群鹿的一半在田里吃草,剩下的鹿的四分之三在附近玩耍。其余9只鹿在池塘里喝水。求这群鹿的总数。
- 一群天鹅中,$\frac{7}{2}$ 倍于天鹅总数的平方根在池塘的岸边嬉戏。剩下的两只在水中荡漾。求天鹅的总数。
- 从一副52张扑克牌中移去梅花K、Q、J,然后将剩下的牌洗牌。从剩下的牌中抽取一张牌。求抽到红桃的概率。
- 平行四边形的三个顶点为 $(3, 4), (3, 8)$ 和 $(9, 8)$。求第四个顶点。
- 如果平行四边形 $ABCD$ 的三个顶点为 $A( 1,2) ,B( 4,3) $ 和 $C( 6,\ 6)$,求第四个顶点 $D$ 的坐标。
- 平行四边形的三个连续顶点为 $(-2, -1), (1, 0)$ 和 $(4, 3)$。求第四个顶点。
- 一个三角形田地的边长分别为 \( 15 \mathrm{~m}、16 \mathrm{~m} \) 和 \( 17 \mathrm{~m} \)。在田地的三个角上分别系着一头牛、一头水牛和一匹马,它们各自用长为 \( 7 \mathrm{~m} \) 的绳子栓着在田里吃草。求这三只动物无法吃到的田地面积。
- 一个矩形田地的长和宽之比为 9: 5。如果田地的面积为 14580 平方米,求用围栏围住田地的成本,已知围栏的价格为每米 3.25 元。
- 如果 3、9 和 a 成等比数列,求 a 的值。
- 求所有能被 9 整除的三位自然数的个数。
- 从一副扑克牌中移去所有红色的牌面牌。将剩下的牌洗牌,然后从中随机抽取一张牌。求抽到的牌是红色牌的概率。
- 考虑食物链:草 → 鹿 → 狮子如果从上述食物链中移去所有狮子,会发生什么?
- 从一副52张扑克牌中移去红色J、Q、K和A。从剩下的牌中随机抽取一张牌。求抽到的牌是黑色Q的概率。
- 使用 C++ 查找所有四元组,其中前三个项成等差数列,后三个项成等比数列。
- 一个池塘里装满了干净的水。下列哪项活动对水污染最小?(a) 在池塘里洗衣服 (b) 在池塘里给动物洗澡 (c) 在池塘里清洗机动车辆 (d) 在池塘里游泳
开启你的 职业生涯
通过完成课程获得认证
开始学习