如果$( \frac{1}{16})^{4-3x}\times 8^{x-2}=( 0.25)^x$,求$\frac{17x}{22}+1$的值。


已知:$( \frac{1}{16})^{4-3x}\times 8^{x-2}=( 0.25)^x$。

求解:求$\frac{17x}{22}+1$的值。


$( \frac{1}{16})^{4-3x}\times 8^{x-2}=( 0.25)^x$

$\Rightarrow ( \frac{1}{2^4})^{4-3x}\times ( 2^3)^{x-2}=( \frac{25}{100})^x$

$\Rightarrow (2^{-4})^{4-3x}\times( 2^3)^{x-2}=( \frac{1}{4})^x$

$\Rightarrow ( 2)^{-4( 4-3x)}\times( 2)^{3( x-2)}=( \frac{1}{2^2})^x$

 $\Rightarrow ( 2)^{( -16+12x)}\times( 2)^{( 3x-6)}=( 2)^{-2x}$

 $\Rightarrow ( 2)^{( -16+12x+3x-6)}=( 2)^{-2x}$

 $\Rightarrow ( 2)^{( 15x-22)}=( 2)^{-2x}$

$\Rightarrow 15x-22=-2x$

$\Rightarrow 15x+2x=22$

$\Rightarrow 17x=22$

$\Rightarrow x=\frac{22}{17}$

因此,$\frac{17x}{22}+1=\frac{17}{22}\times\frac{22}{17}+1$

$=1+1=2$

所以,$\frac{17x}{22}+1=2$

更新于: 2022年10月10日

63 次浏览

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告