如果 tanθ = 12/13,求解 (2sinθ cosθ)/(cos²θ -sin²θ)
tanθ =12/13 = 对边/邻边
已知 (2sinθ cosθ)/(cos²θ -sin²θ)
将分子和分母都除以 cos²θ
(2sinθ cosθ)/(cos²θ -sin²θ)
= (2sinθ cosθ)/cos²θ/(cos²θ/cos²θ -sin²θ/cos²θ)
= 2tanθ/(1 - tan²θ)
代入 tanθ = 12/13
= 2 x 12/13 / (1 - [12/13]^2)
= 24/13 / (169-144)/(169)
= 24/13 / 25/169
= 24/13 x 169/25
= 24 x13/25 = 312/25 答案
广告