如果 \( tan \theta = \frac{a}{b} \),证明\( \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \).


已知

$tan\ θ = \frac{a}{b}$。

要求

我们必须证明

\( \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \).

解:  

假设在直角三角形 $ABC$ 中,$\angle B = 90^\circ$,$\ tan\ \theta = tan\ A = \frac{a}{b}$。

我们知道,

在以 $B$ 为直角的直角三角形 $ABC$ 中,

根据勾股定理,

$AC^2=AB^2+BC^2$

根据三角函数的定义,

$sin\ \theta=\frac{对边}{斜边}=\frac{BC}{AC}$

$cos\ \theta=\frac{邻边}{斜边}=\frac{AB}{AC}$

$tan\ \theta=\frac{对边}{邻边}=\frac{BC}{AB}$

这里,

$AC^2=AB^2+BC^2$

$\Rightarrow AC^2=(b)^2+(a)^2$

$\Rightarrow AC^2=b^2+a^2$

$\Rightarrow AC=\sqrt{a^2+b^2}$

因此,

$sin\ \theta=\frac{BC}{AC}=\frac{a}{\sqrt{a^2+b^2}}$

$cos\ \theta=\frac{AB}{AC}=\frac{b}{\sqrt{a^2+b^2}}$

这意味着,

让我们考虑 LHS,

$\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a\left(\frac{a}{\sqrt{a^{2} +b^{2}}}\right) -b\left(\frac{b}{\sqrt{a^{2} +b^{2}}}\right)}{a\left(\frac{a}{\sqrt{a^{2} +b^{2}}}\right) +b\left(\frac{b}{\sqrt{a^{2} +b^{2}}}\right)}$

$=\frac{\frac{a^{2} -b^{2}}{\sqrt{a^{2} +b^{2}}}}{\frac{a^{2} +b^{2}}{\sqrt{a^{2} +b^{2}}}}$

$=\frac{a^{2} -b^{2}}{a^{2} +b^{2}}$

$=$ RHS

证毕。

更新于: 2022-10-10

113 次浏览

开启你的 职业生涯

完成课程获得认证

开始学习
广告

© . All rights reserved.