化简:$\frac{cos^{2}\theta}{cosec^{2}\theta.sin^{2}\theta-\sin^{2}\theta}$。
已知:$\frac{cos^{2}\theta}{cosec^{2}\theta.sin^{2}\theta-\sin^{2}\theta}$。
要求:化简:$\frac{cos^{2}\theta}{cosec^{2}\theta.sin^{2}\theta-\sin^{2}\theta}$。
解答
$\frac{cos^{2}\theta}{cosec^{2}\theta.sin^{2}\theta-\sin^{2}\theta}$
$=\frac{cos^{2}\theta}{sin^{2}\theta( cosec^{2}\theta-1)}$
$=\frac{cos^{2}\theta}{sin^{2}\theta}.\frac{1}{( cosec^{2}\theta-1)}$
$=cot^2\theta.\frac{1}{cot^2\theta}$ [$\because \frac{cos^{2}\theta}{sin^{2}\theta}=cot^2\theta$ 且 $cosec^2\theta-1=cot^2\theta$ ]
$=1$
因此,$\frac{cos^{2}\theta}{cosec^{2}\theta.sin^{2}\theta-\sin^{2}\theta}=1$。
广告