写出下列各分数的加法逆元
(i) \( \frac{-2}{17} \)
(ii) \( \frac{3}{-11} \)
(iii) \( \frac{-17}{5} \)
(iv) \( \frac{-11}{-25} \)
需要完成的任务
我们需要写出给定分数的加法逆元。
解答
加法逆元
实数集中,当与给定数相加时得到零的数。
(i) 令给定分数的加法逆元为 $x$。
因此,
$x+\frac{-2}{17}=0$
$x=0-(\frac{-2}{17})$
$=0+\frac{2}{17}$
$=\frac{2}{17}$
给定分数的加法逆元是 $\frac{2}{17}$。
(ii) 令给定分数的加法逆元为 $x$。
因此,
$x+\frac{3}{-11}=0$
$x=0-(\frac{3}{-11})$
$=0+\frac{3}{11}$
$=\frac{3}{11}$
给定分数的加法逆元是 $\frac{3}{11}$。
(iii) 令给定分数的加法逆元为 $x$。
因此,
$x+\frac{-17}{5}=0$
$x=0-(\frac{-17}{5})$
$=0+\frac{17}{5}$
$=\frac{17}{5}$
给定分数的加法逆元是 $\frac{17}{5}$。
(iv) 令给定分数的加法逆元为 $x$。
因此,
$x+\frac{-11}{-25}=0$
$x=0-(\frac{-11}{-25})$
$=0-\frac{11}{25}$
$=-\frac{11}{25}$
给定分数的加法逆元是 $-\frac{11}{25}$。
- 相关文章
- 写出下列各分数的加法逆元。(i) \( \frac{2}{8} \)(ii) \( \frac{-5}{9} \)(iii) \( \frac{-6}{-5} \)(iv) \( \frac{2}{-9} \)(v) \( \frac{19}{-6} \)。
- 利用有理数加法的交换律和结合律,将下列各数表示成有理数的形式:(i) \( \frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3} \)(ii) \( \frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9} \)(iii) \( \frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3} \)(iv) \( \frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21} \)
- 计算:(i) \( \frac{7}{11} \) 乘以 \( \frac{5}{4} \)(ii) \( \frac{5}{7} \) 乘以 \( \frac{-3}{4} \)(iii) \( \frac{-2}{9} \) 乘以 \( \frac{5}{11} \)(iv) \( \frac{-3}{17} \) 乘以 \( \frac{-5}{-4} \)(v) \( \frac{9}{-7} \) 乘以 \( \frac{36}{-11} \)(vi) \( \frac{-11}{13} \) 乘以 \( \frac{-21}{7} \)(vii)\( -\frac{3}{5} \) 乘以 \( -\frac{4}{7} \)(viii) \( -\frac{15}{11} \) 乘以 7
- 将下列有理数按降序排列:$\frac{-3}{10},\ \frac{7}{-15},\ \frac{-11}{20},\ \frac{17}{-30}$。
- 写出下列各数的负数(加法逆元):(i) \( \frac{-2}{5} \)(ii) \( \frac{7}{-9} \)(iii) \( \frac{-16}{13} \)(iv) \( \frac{-5}{1} \)(v) 0(vi) 1(vii) \( -1 \)
- 计算下列有理数的和:(i) \( \frac{-5}{7} \) 和 \( \frac{3}{7} \)(ii) \( \frac{-15}{4} \) 和 \( \frac{7}{4} \)(iii) \( \frac{-8}{11} \) 和 \( \frac{-4}{11} \)(iv) \( \frac{6}{13} \) 和 \( \frac{-9}{13} \)
- 适当调整顺序并计算下列各式的和:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
- 计算:$(i)$. $\frac{7}{24\ }- \frac{17}{36}$$(ii)$. $\frac{5}{63}-\ (-\frac{6}{21})$$(iii)$. $-\frac{6}{13}\ -\ (-\frac{7}{15})$$(iv)$. $-\frac{3}{8}-\frac{7}{11}$$(v)$. $-2\frac{1}{9}\ -\ 6$
- 将下列有理数按升序排列:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
- 计算积:$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$$(ii)$. $\frac{3}{10}\times(-9)$$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
- 从第二个有理数中减去第一个有理数:(i) \( \frac{3}{8}, \frac{5}{8} \)(ii) \( \frac{-7}{9}, \frac{4}{9} \)(iii) \( \frac{-2}{11}, \frac{-9}{11} \)(iv) \( \frac{11}{13}, \frac{-4}{13} \)(v) \( \frac{1}{4}, \frac{-3}{8} \)(vi) \( \frac{-2}{3}, \frac{5}{6} \)(vii) \( \frac{-6}{7}, \frac{-13}{14} \)(viii) \( \frac{-8}{33}, \frac{-7}{22} \)
- 计算:$\frac{17}{9}-\frac{2}{15}+\frac{11}{18}$
- 计算和:$(i)$. $\frac{5}{4}+(-\frac{11}{4})$$(ii)$. $\frac{5}{3}+\frac{3}{5}$$(iii)$. $\frac{-9}{10}+\ \frac{22}{15}$$(iv)$. $\frac{-3}{11}+\frac{5}{9}$$(v)$. $\frac{-8}{19}+(-\frac{2}{57})$$(vi)$. $-\frac{2}{3}+0$$(vii)$. $-2\frac{1}{3}\ +\ 4\frac{3}{5}$
- 验证下列每对有理数加法的交换律:(i) \( \frac{-11}{5} \) 和 \( \frac{4}{7} \)(ii) \( \frac{4}{9} \) 和 \( \frac{7}{-12} \)(iii) \( \frac{-3}{5} \) 和 \( \frac{-2}{-15} \)(iv) \( \frac{2}{-7} \) 和 \( \frac{12}{-35} \)(v) 4 和 \( \frac{-3}{5} \)(vi) \( -4 \) 和 \( \frac{4}{-7} \)
- 化简下列各数,并写成形如 的有理数:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
开启你的 职业生涯
通过完成课程获得认证
开始学习