Loading [MathJax]/jax/output/HTML-CSS/jax.js

解下列每个方程,并在每种情况下检查你的结果
(i) 452x154x+105=1514x9
(ii) 5(7x+5)3233=134x23


已知

给定的方程为

(i) 452x154x+105=1514x9

(ii) 5(7x+5)3233=134x23

要求

我们需要解给定的方程并检查结果。

解答

为了检查结果,我们需要找到变量的值,并将它们代入方程。找到左侧的值和右侧的值,并检查两者是否相等。

(i) 给定的方程为 452x154x+105=1514x9

452x154x+105=1514x9

重新排列,得到:

452x154x+1051514x9=0

分母 15、5 和 9 的最小公倍数是 45

(452x)×3(4x+10)×9(1514x)×545=0

3(45)3(2x)9(4x)9(10)5(15)+5(14x)45=0

1356x36x9075+70x45=0

13516542x+70x45=0

30+28x45=0

交叉相乘,得到:

28x30=45(0)

28x30=0

28x=30

x=3028

x=1514

验证

左侧 =452x154x+105

=452(1514)154(1514)+105

=4515715307+105

=45×7157×1530+10×77×5

=3151510530+7035

=30010510035

=6021207

=6020×321

=606021

=0

右侧 =1514x9

=1514(1514)9

=15159

=0

左侧 = 右侧

因此验证成立。

(ii) 给定的方程为 5(7x+5)3233=134x23

5(7x+5)3233=134x23

重新排列,得到:

5(7x+5)3+4x23=233+13

3 和 1 的最小公倍数是 3

5(7x)+5(5)+4x23=23+13×33

35x+25+4x23=23+393

39x+233=623

交叉相乘,得到:

39x+23=62

39x=6223

39x=39

x=3939

x=1

验证

左侧 =5(7x+5)3233

=5(7(1)+5)3233

=5(7+5)3233

=5(12)3233

=603233

=60233

=373

右侧 =134x23

=134(1)23

=13423

=1323

=13×323)

=3923

=373

左侧 = 右侧

因此验证成立。

更新于: 2023年4月13日

99 次浏览

开启你的 职业生涯

完成课程,获得认证

立即开始
广告