加法
$(i)$. $3mn,\ -5mn,\ 8mn,\ -4mn$
$(ii)$. $t-8tz,\ 3tz-z,\ z-t$
$(iii)$. $-7mn+5,\ 12mn+2,\ 9mn-8,\ -2mn-3$
$(iv)$. $a+b-3,\ b-a+3,\ a-b+3$
$(v)$. $14x+10y-12xy-13,\ 18-7x-10y+8xy,\ 4xy$
$(vi)$. $5m-7n,\ 3n-4m+2,\ 2m-3mn-5$
$(vii)$. $4x^2y,\ -3xy^2,\ -5xy^2,\ 5x^2y$
$(viii)$. $3p^2q^2-4pq+5,\ -10p^2q^2,\ 15+9pq+7p^2q^2$
$(ix)$. $ab-4a,\ 4b-ab,\ 4a-4b$
$(x)$. $x^2-y^2-1,\ y^2-1-x^2,\ 1-x^2-y^2$
需要完成的任务:求和
$(i)$. $3mn,\ -5mn,\ 8mn,\ -4mn$
$(ii)$. $t-8tz,\ 3tz-z,\ z-t$
$(iii)$. $-7mn+5,\ 12mn+2,\ 9mn-8,\ -2mn-3$
$(iv)$. $a+b-3,\ b-a+3,\ a-b+3$
$(v)$. $14x+10y-12xy-13,\ 18-7x-10y+8xy,\ 4xy$
$(vi)$. $5m-7n,\ 3n-4m+2,\ 2m-3mn-5$
$(vii)$. $4x^2y,\ -3xy^2,\ -5xy^2,\ 5x^2y$
$(viii)$. $3p^2q^2-4pq+5,\ -10p^2q^2,\ 15+9pq+7p^2q^2$
$(ix)$. $ab-4a,\ 4b-ab,\ 4a-4b$
$(x)$. $x^2-y^2-1,\ y^2-1-x^2,\ 1-x^2-y^2$
解答:
i) $3mn,\ -5mn,\ 8mn,\ -4mn$
$=(3mn)+(-5mn)+(8mn)+(-4mn)$
$=(3-5+8-4)mn$
$=2mn$
ii) $t-8tz,\ 3tz-z,\ z-t$
$=(t-8tz)+(3tz-z)+(z-t)$
$=t-8tz+3tz-z+z-t$
$=t-t-8tz+3tz-z+z$
$=-5tz$
iii) $– 7mn + 5 + 12mn + 2 + (9mn – 8) + (- 2mn – 3) = – 7mn + 5 + 12mn + 2 + 9mn – 8 – 2mn – 3$
$= – 7mn + 12mn + 9mn – 2mn + 5 + 2 – 8 – 3$
$= mn (-7 + 12 + 9 – 2) + (5 + 2 – 8 – 3)$
$= mn (- 9 + 21) + (7 – 11)$
$= mn (12) – 4$
$= 12mn – 4$
iv) $a+b-3,\ b-a+3,\ a-b+3$
$=(a+b-3)+(b-a+3)+(a-b+3)$
$=a-a+a+b+b-b-3+3+3$
$=a(1-1+1)+b\ (1+1-1)+3\ (-1+1+1)$
$=a+b+3$
v) $14x+10y-12xy-13,\ 18-7x-10y+8xy,\ 4xy$
$=(14x+10y-12xy-13)+(18-7x-10y+8yx)+4xy$
$=14x-7x+10y-10y-12xy+8yx+4xy-13+18$
$=x(14-7)+y(10-10)+xy\ (-12+8+4)-13+18$
$=7x+5$
vi) $5m-7n,\ 3n-4m+2,\ 2m-3mn-5$
$=(5m-7n)+(3n-4m+2)+(2m-3mn-5)$
$=5m-4m+2m-7n+3n-3mn+2-5$
$=m(5-4+2)+n(-7+3)-3mn+2-5$
$=3m-4n-3mn-3$
vii) $4x^2y,-3xy^2,-5xy^2,\ 5x^2y$
$=x^2y\ (4+5)+xy^2\ (-3-5)$
$=9x^2y-8xy^2$
viii) $3p^2q^2-4pq+5,\ -10p^2q^2,\ 15+9pq+7p^2q^2$
$=(3p^2q^2-4pq+5)+(-10p^2q^2)+(15+9pq+7p^2q^2)$
$=3p^2q^2-10p^2q^2+7p^2q^2-4pq+9pq+5+15$
$=p^2q^2(3-10+7)+pq(-4+9)+5+15$
$=5pq+20$
ix) $ab-4a,\ 4b-ab,\ 4a-4b$
$=(ab-4a)+(4b-ab)+(4a-4b)$
$=ab-ab-4a+4a+4b-4b$
$=ab(1-1)+a(-4+4)+b(4-4)$
$=0$
x) $x^2-y^2-1,\ y^2-1-x^2,\ 1-x^2-y^2$
$=(x^2-y^2-1)+(y^2-1-x^2)+(1-x^2-y^2)$
$=x^2-x^2-x^2-y^2+y^2-y^2-1-1+1$
$=x^2\ (1-1-1)+y^2(-1+1-1)+(-1-1+1)$
$=-x^2-y^2-1$
- 相关文章
- 将以下代数式分类为单项式、二项式和三项式。$(i)$. $4y-7z$$(ii)$. $y^2$$(iii)$. $x+y-xy$$(iv)$. $100$$(v)$. $ab-a-b$$(vi)$. $5-3t$(viii)$. $4p^2q-4pq^2$ $(viii)$. $7mn$$(ix)$. $z^2-3z+8$$(x)$. $a^2+b^2$$(xi)$. $z^2+z$$(xii)$. $1+x+x^2$
- 使用合适的恒等式展开以下每个式子:(i) \( (x+2 y+4 z)^{2} \)(ii) \( (2 x-y+z)^{2} \)(iii) \( (-2 x+3 y+2 z)^{2} \)(iv) \( (3 a-7 b-c)^{2} \)(v) \( (-2 x+5 y-3 z)^{2} \)(vi) \( \left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \)
- 减法:(i) 从 $12xy$ 中减去 $-5xy$ (ii) 从 $-7a^2$ 中减去 $2a^2$ (iii) 从 \( 3 a-5 b \) 中减去 \( 2 a-b \) (iv) 从 \( 4 x^{3}+x^{2}+x+6 \) 中减去 \( 2 x^{3}-4 x^{2}+3 x+5 \) (v) 从 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中减去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) (vi) 从 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中减去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) (vii) 从 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中减去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) (viii) 从 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中减去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 将以下代数式相加(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 求以下乘积:(i) $(x + 4) (x + 7)$(ii) $(x - 11) (x + 4)$(iii) $(x + 7) (x - 5)$(iv) $(x - 3) (x - 2)$(v) $(y^2 - 4) (y^2 - 3)$(vi) $(x + \frac{4}{3}) (x + \frac{3}{4})$(vii) $(3x + 5) (3x + 11)$(viii) $(2x^2 - 3) (2x^2 + 5)$(ix) $(z^2 + 2) (z^2 - 3)$(x) $(3x - 4y) (2x - 4y)$(xi) $(3x^2 - 4xy) (3x^2 - 3xy)$(xii) $(x + \frac{1}{5}) (x + 5)$(xiii) $(z + \frac{3}{4}) (z + \frac{4}{3})$(xiv) $(x^2 + 4) (x^2 + 9)$(xv) $(y^2 + 12) (y^2 + 6)$(xvi) $(y^2 + \frac{5}{7}) (y^2 - \frac{14}{5})$(xvii) $(p^2 + 16) (p^2 - \frac{1}{4})$
- 检查以下方程是否为二次方程:(i) \( (x+1)^{2}=2(x-3) \)(ii) \( x^{2}-2 x=(-2)(3-x) \)(iii) \( (x-2)(x+1)=(x-1)(x+3) \)(iv) \( (x-3)(2 x+1)=x(x+5) \)(v) \( (2 x-1)(x-3)=(x+5)(x-1) \)(vi) \( x^{2}+3 x+1=(x-2)^{2} \)(vii) \( (x+2)^{3}=2 x\left(x^{2}-1\right) \)(viii) \( x^{3}-4 x^{2}-x+1=(x-2)^{3} \)
- 减法:(i). 从 $y^2$ 中减去 $-5y^2$ (ii). 从 $-12xy$ 中减去 $6xy$ (iii). 从 $(a+b)$ 中减去 $(a-b)$ (iv). 从 $b(5-a)$ 中减去 $a(b-5)$ (v). 从 $4m^2-3mn+8$ 中减去 $-m^2+5mn$ (vi). 从 $5x-10$ 中减去 $-x^2+10x-5$ (vii). 从 $3ab-2a^2-2b^2$ 中减去 $5a^2-7ab+5b^{2}$ (viii). 从 $5p^2+3q^2-pq$ 中减去 $4pq-5q^2-3p^2$
- 验证 \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 识别以下式子中的单项式、二项式和三项式:(i) \( 2 x+y-z \)(ii) \( -2 x^{3} \)(iii) \( -7-p \)(iv) \( 5 x y z \)(v) \( 5-3 y-y^{2} \)(vi) \( m^{2}-1 \)
- 将以下二项式的平方写成三项式:(i)\( (x+2)^{2} \)(ii) \( (8 a+3 b)^{2} \)(iii) \( (2 m+1)^{2} \)(iv) \( \left(9 a+\frac{1}{6}\right)^{2} \)(v) \( \left(x+\frac{x^{2}}{2}\right)^{2} \)(vi) \( \left(\frac{x}{4}-\frac{y}{3}\right)^{2} \)(vii) \( \left(3 x-\frac{1}{3 x}\right)^{2} \)(viii) \( \left(\frac{x}{y}-\frac{y}{x}\right)^{2} \)(ix) \( \left(\frac{3 a}{2}-\frac{5 b}{4}\right)^{2} \)(x) \( \left(a^{2} b-b c^{2}\right)^{2} \)(xi) \( \left(\frac{2 a}{3 b}+\frac{2 b}{3 a}\right)^{2} \)(xii) \( \left(x^{2}-a y\right)^{2} \)
- 化简:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- \求 $(x +y) \div (x - y)$。如果,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 求以下二项式的乘积:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
开启你的 职业生涯
通过完成课程获得认证
立即开始