从下列四个选项中选择正确的答案
已知\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \),且\( \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{1}{3} \)。则\( \frac{\text { ar (PRQ) }}{\operatorname{ar}(\mathrm{BCA})} \)等于
(A) 9
(B) 3
(C) \( \frac{1}{3} \)
(D) \( \frac{1}{9} \)
已知
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \),且\( \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{1}{3} \)
求解
我们需要求\( \frac{\text { ar (PRQ) }}{\operatorname{ar}(\mathrm{BCA})} \).
解答
$\triangle A B C \sim \triangle P Q R$
$\frac{B C}{Q R}=\frac{1}{3}$
我们知道:
两个相似三角形的面积之比等于它们对应边长之比的平方。
因此:
$\frac{\operatorname{ar}(\triangle P R Q)}{\operatorname{ar}(\triangle B C A)}=\frac{(Q R)^{2}}{(B C)^{2}}$
$=(\frac{Q R}{B C})^{2}$
$=(\frac{3}{1})^{2}$
$=\frac{9}{1}$
$=9$
- 相关文章
- 从下列四个选项中选择正确的答案:如果\( \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm} \)且\( \mathrm{BC}=15 \mathrm{~cm} \),则\( \mathrm{PR} \)等于(A) \( 10 \mathrm{~cm} \)(B) \( 12 \mathrm{~cm} \)(C) \( \frac{20}{3} \mathrm{~cm} \)(D) \( 8 \mathrm{~cm} \)
- 从下列四个选项中选择正确的答案:如果在两个三角形\( \mathrm{ABC} \)和\( \mathrm{PQR} \)中,\( \frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}} \),则(A) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{CAB} \)(B) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC} \)(C) \( \triangle \mathrm{CBA} \sim \triangle \mathrm{PQR} \)(D) \( \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR} \)
- \( P \)和\( Q \)分别是三角形\( \mathrm{ABC} \)的边\( \mathrm{AB} \)和\( \mathrm{BC} \)的中点,\( \mathrm{K} \)是\( \mathrm{AP} \)的中点,证明:(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
- \( \mathrm{D}, \mathrm{E} \)和\( \mathrm{F} \)分别是三角形\( \mathrm{ABC} \)的边\( \mathrm{BC}, \mathrm{CA} \)和\( \mathrm{AB} \)的中点。证明:(i) BDEF 是平行四边形。(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
- 在三角形\( \mathrm{ABC} \)中,\( \mathrm{E} \)是中线\( \mathrm{AD} \)的中点。证明\( \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \).
- 如下图所示,\( \mathrm{ABC} \)和\( \mathrm{BDE} \)是两个等边三角形,\( \mathrm{D} \)是\( \mathrm{BC} \)的中点。如果\( \mathrm{AE} \)与\( \mathrm{BC} \)相交于\( \mathrm{F} \),证明:(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[提示:连接\( \mathrm{EC} \)和\( \mathrm{AD} \)。证明\( \mathrm{BE} \| \mathrm{AC} \)且\( \mathrm{DE} \| \mathrm{AB} \)
- 如果\( \triangle \mathrm{ABC} \)在\( \mathrm{C} \)处成直角,则\( \cos (\mathrm{A}+\mathrm{B}) \)的值为(A) 0(B) 1(C) \( \frac{1}{2} \)(D) \( \frac{\sqrt{3}}{2} \)
- 已知 $\vartriangle ABC\ \sim\vartriangle PQR$,如果 $\frac{AB}{PQ}=\frac{1}{3}$,则求 $\frac{ar( \vartriangle ABC)}{ar( \vartriangle PQR)}$。
- 从下列四个选项中选择正确的答案:如果在两个三角形\( \mathrm{DEF} \)和\( \mathrm{PQR} \)中,\( \angle \mathrm{D}=\angle \mathrm{Q} \)且\( \angle \mathrm{R}=\angle \mathrm{E} \),则下列哪个说法不正确?(A) \( \frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(B) \( \frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}} \)(C) \( \frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(D) \( \frac{E F}{R P}=\frac{D E}{Q R} \)
- 如果\( \sin \mathrm{A}=\frac{1}{2} \),则\( \cot \mathrm{A} \)的值为(A) \( \sqrt{3} \)(B) \( \frac{1}{\sqrt{3}} \)(C) \( \frac{\sqrt{3}}{2} \)(D) 1
- 如果点\( P(2,1) \)位于连接点\( A(4,2) \)和\( B(8,4) \)的线段上,则(A) \( \mathrm{AP}=\frac{1}{3} \mathrm{AB} \)(B) \( \mathrm{AP}=\mathrm{PB} \)(C) \( \mathrm{PB}=\frac{1}{3} \mathrm{AB} \)(D) \( \mathrm{AP}=\frac{1}{2} \mathrm{AB} \)
- 在下图中,\( \mathrm{P} \)是平行四边形\( \mathrm{ABCD} \)内部的一个点。证明:(i) \( \operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)(ii) \( \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD}) \)[提示:过\( \mathrm{P} \)作一条平行于\( \mathrm{AB} \)的线。]
- 在$\triangle ABC$中,$P$和$Q$分别是$AB$和$BC$的中点,$R$是$AP$的中点。证明\( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ARC}) \).
- 三角形\( \mathrm{ABC} \)的角\( \mathrm{A}, \mathrm{B} \)和\( \mathrm{C} \)的角平分线分别在其外接圆处与\( \mathrm{D}, \mathrm{E} \)和\( \mathrm{F} \)相交。证明三角形\( \mathrm{DEF} \)的角为\( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \)和\( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
- 在下图中,\( \mathrm{ABC} \)是直角三角形,直角在\( \mathrm{A} \)。\( \mathrm{BCED}, \mathrm{ACFG} \)和\( \mathrm{ABMN} \)分别是边\( \mathrm{BC}, \mathrm{CA} \)和\( \mathrm{AB} \)上的正方形。线段\( \mathrm{AX} \perp \mathrm{DE} \)与\( \mathrm{BC} \)相交于Y。证明:(i) \( \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD} \)(ii) \( \operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC}) \)(iii) \( \operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN}) \)(iv) \( \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE} \)(v) \( \operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB}) \)(vi) \( \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG}) \)(vii) ar \( (\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG}) \)