连续时间傅里叶级数的乘法或调制特性
傅里叶级数
如果 $x(t)$ 是一个周期为 $T$ 的周期函数,则该函数的连续时间指数傅里叶级数定义为:
$$\mathrm{x(t)=\sum_{n=−\infty}^{\infty}C_{n}\:e^{jn\omega_{0} t}\:\:… (1)}$$
其中,$C_{n}$ 是指数傅里叶级数系数,由下式给出:
$$\mathrm{C_{n}=\frac{1}{T}\int_{t_{0}}^{t_{0}+T}x(t)e^{-jn\omega_{0} t}dt\:\:… (2)}$$
调制或乘法特性
设 $x_{1}(t)$ 和 $x_{2}(t)$ 为两个周期为 $T$ 的周期信号,其傅里叶级数系数分别为 $C_{n}$ 和 $D_{n}$。如果
$$\mathrm{x_{1}(t)\overset{FS}{\leftrightarrow}C_{n}}$$
$$\mathrm{x_{2}(t)\overset{FS}{\leftrightarrow}D_{n}}$$
则,连续时间傅里叶级数的调制或乘法特性指出:
$$\mathrm{x_{1}(t)\cdot x_{2}(t)\overset{FS}{\leftrightarrow}\sum_{k=−\infty}^{\infty}C_{k}\:D_{n-k}}$$
证明
根据连续时间傅里叶级数的定义,我们得到:
$$\mathrm{FS[x_{1}(t)\cdot x_{2}(t)]=\frac{1}{T}\int_{t_{0}}^{t_{0}+T}[x_{1}(t)\cdot x_{2}(t)]e^{-jn\omega_{0} t}dt}$$
$$\mathrm{\Rightarrow\:FS[x_{1}(t)\cdot x_{2}(t)]=\frac{1}{T}\int_{t_{0}}^{t_{0}+T}x_{1}(t)\left (\sum_{k=−\infty}^{\infty} C_{k} e^{jk\omega_{0} t}\right )e^{-jn\omega_{0} t}dt}$$
$$\mathrm{\Rightarrow\:FS[x_{1}(t)\cdot x_{2}(t)]=\frac{1}{T}\int_{t_{0}}^{t_{0}+T}x_{1}(t)\left (\sum_{k=−\infty}^{\infty} C_{k} e^{-j(n-k)\omega_{0} t}\right )e^{-jn\omega_{0} t}dt\:\:… (3)}$$
通过重新排列式 (3) 中积分和求和的顺序,我们得到:
$$\mathrm{FS[x_{1}(t)\cdot x_{2}(t)]=\sum_{k=−\infty}^{\infty} C_{k}\left ( \frac{1}{T} \int_{t_{0}}^{t_{0}+T} x_{1}(t)e^{-j(n-k)\omega_{0} t}\:dt\right )=\sum_{k=−\infty}^{\infty}C_{k}D_{n-k}}$$
其中,
$$\mathrm{D_{n-k}=\frac{1}{T}\int_{t_{0}}^{t_{0}+T}x_{1}(t)e^{-j(n-k)\omega_{0} t}\:dt}$$
因此,
$$\mathrm{x_{1}(t)\cdot x_{2}(t)\overset{FS}{\leftrightarrow}\sum_{k=−\infty}^{\infty}C_{k}D_{n-k}\:\:\:(证毕)}$$