对于以下每个多项式,求出 \( p(0), p(1) \) 和 \( p(2) \)
(i) \( p(y)=y^{2}-y+1 \)
(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)
(iii) \( p(x)=x^{3} \)
(iv) \( p(x)=(x-1)(x+1) \)
要求:
我们必须找到给定多项式的 \( p(0), p(1) \) 和 \( p(2) \)。
解答
要找到多项式 $f(x)$ 在 $x=a$ 处的取值,我们必须将 $x=a$ 代入 $f(x)$。
因此,
(i) \( p(y)=y^{2}-y+1 \)
$p(0) = (0)^{2}-(0)+1$
$= 0-0+1$
$= 1$
$p(1) = (1)^{2}-(1)+1$
$= 1-1+1$
$= 1$
$p(2) = (2)^{2}-(2)+1$
$= 4-2+1$
$= 3$
因此,给定多项式的 $p(0), p(1), p(2)$ 分别为 $1,1$ 和 $3$。
(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)
$p(0) = 2+0+2 (0)^{2}-(0)^{3}$
$= 2+2(0)-0$
$= 2+0$
$=2$
$p(1) = 2+1+2 (1)^{2}-(1)^{3}$
$= 3+2(1)-1$
$= 4$
$p(2) = 2+2+2(2)^2-(2)^3$
$= 4+2(4)-8$
$=-4+8$
$=4$
因此,给定多项式的 $p(0), p(1), p(2)$ 分别为 $2,2$ 和 $4$。
(iii) \( p(x)=x^{3} \)
$p(0) = (0)^{3}$
$=0$
$p(1) =(1)^{3}$
$= 1$
$p(2) = (2)^{3}$
$= 8$
因此,给定多项式的 $p(0), p(1), p(2)$ 分别为 $0,1$ 和 $8$。
(iv) \( p(x)=(x-1)(x+1) \)
$p(0) = (0-1)(0+1)$
$=(-1)(1)$
$=-1$
$p(1) =(1-1)(1+1)$
$=(0)(2)$
$=0$
$p(2) = (2-1)(2+1)$
$=(1)(3)$
$=3$
因此,给定多项式的 $p(0), p(1), p(2)$ 分别为 $-1,0$ 和 $3$。
- 相关文章
- 验证以下是否为指定多项式的零点。(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- 如果 \( x-1 \) 是以下每种情况下 \( p(x) \) 的因数,求 \( k \) 的值:(i) \( p(x)=x^{2}+x+k \)(ii) \( p(x)=2 x^{2}+k x+\sqrt{2} \)(iii) \( p(x)=k x^{2}-\sqrt{2} x+1 \)(iv) \( p(x)=k x^{2}-3 x+k \)
- 使用因式定理确定 \( g(x) \) 是否为以下每种情况下 \( p(x) \) 的因数:(i) \( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 \)(ii) \( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2 \)(iii) \( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \)
- 在以下每种情况下找到多项式的零点:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) 是实数。
- 求多项式 \( x^{2}+x-p(p+1) \) 的零点。
- 如果 $p(x) = x^2 - 2\sqrt{2}x+1$,则求 $p(2\sqrt{2})$ 的值。
- 在以下每种情况下,将多项式 $p(x)$ 除以多项式 $g(x)$,并找到商和余数:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- 解下列线性方程组:(i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- 如果 $p(x)=x^{2}-2 \sqrt{2} x+1$,那么 $p(2 \sqrt{2})$ 的值是多少?
- 求 p 的值,使二次方程 $(p + 1)x^2 - 6(p + 1)x + 3(p + 9) = 0, p ≠ -1$ 有相等的根。由此,求出该方程的根。
- 识别下列中的单项式、二项式和三项式:(i) \( 2 x+y-z \)(ii) \( -2 x^{3} \)(iii) \( -7-p \)(iv) \( 5 x y z \)(v) \( 5-3 y-y^{2} \)(vi) \( m^{2}-1 \)
- 将下列多项式分类为一次、二次和三次多项式:(i) \( x^{2}+x \)(ii) \( x-x^{3} \)(iii) \( y+y^{2}+4 \)(iv) \( 1+x \)(v) \( 3 t \)(vi) \( r^{2} \)(vii) \( 7 x^{3} \)
- 1. 因式分解表达式 \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. 因式分解表达式 \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- 假设 $x, y, z$ 是正实数,化简以下每个表达式:\( (\sqrt{x})^{-2 / 3} \sqrt{y^{4}} \p \sqrt{x y^{-1 / 2}} \)
- 解方程$x^{2}r^{2}+2r(2q-p) x+(p-2q)^{2}=0$
开启你的 职业生涯
通过完成课程获得认证
开始学习