在△ABC中,如果cot(A/2), cot(B/2), cot(C/2) 成等差数列,则证明a, b, c成等差数列。
已知:在△ABC中,cot(A/2), cot(B/2), cot(C/2) 成等差数列。
求证:a, b, c成等差数列。
解答
cot(A/2) = (S-a)/r
cot(B/2) = (S-b)/r
cot(C/2) = (S-c)/r
S = (a+b+c)/2
r = 半径
cot(A/2)/(S-a) = cot(B/2)/(S-b) = cot(C/2)/(S-c)
因为cot(A/2), cot(B/2), cot(C/2)成等差数列,
所以cot(B/2) = [cot(A/2) + cot(C/2)]/2
所以[cot(A/2) + cot(C/2)]/2 = {[(S-a)/(S-b)]cot(B/2) + [(S-c)/(S-b)]cot(B/2)}/2
= (1/2) * [(2S-a-c)/(S-b)] * cot(B/2)
= (1/2) * (a+2b+c)/(a+c) * cot(B/2)
= (1/2) * (2a+2c)/(a+c) * cot(B/2) [因为2b=a+c]
= cot(B/2)
所以a, b, c成等差数列。
广告