一个两位数与交换其数字顺序后得到的数的和为 121。如果该数的个位和十位数字分别为 x 和 y,则写出表示上述陈述的线性方程。
已知
一个两位数与交换其数字顺序后得到的数的和为 121。
该数的个位和十位数字分别为 x 和 y。
要求
我们必须写出表示上述陈述的线性方程。
解答
个位数字 =x
十位数字 =y
这意味着,
给定的数字 =10y+x
交换数字顺序后得到的数 =10x+y
一个两位数与交换其数字顺序后得到的数的和为 121。
因此,
(10y+x)+(y+10x)=121
x+10x+y+10y=121
11x+11y=121
11(x+y)=121
x+y=11
x+y−11=0
因此,表示给定陈述的线性方程是 x+y−11=0。
广告