一个分数的分子和分母之和比分母的两倍少3。如果分子和分母都减去1,则分数变为12,求这个分数。
已知:一个分数的分子和分母之和比分母的两倍少3。如果分子和分母都减去1,则分数变为12。
要求:求这个分数。
解:设分数的分子=x
设分数的分母=y
根据第一个已知条件
x+y=2y−3
x−y=−3 ………………. (1)
根据第二个已知条件
如果分子和分母都减去1,则分数变为12。
(x−1)(y−1)=12
⇒2(x−1)=y−1
⇒2x−y=1 …………………. (2)
用方程(2)减去方程(1)
2x−y−(x−y)=1−(−3)
⇒x=4
将x的值代入方程。
⇒x=4
将x的值代入方程
4−y=−3
⇒y=7
解方程(1)和(2)
得到x=4和y=7
∴ 分数是 47
广告