拉普拉斯变换的时间积分性质
拉普拉斯变换
拉普拉斯变换是一种数学工具,用于将时域中的微分方程转换为频域或s域中的代数方程。
数学上,如果$\mathit{x}\mathrm{\left(\mathit{t}\right)}$是时域函数,则其拉普拉斯变换定义为:
$$\mathrm{\mathit{L}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{t}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}\mathrm{\left(\mathit{t}\right)}\mathit{e^{-\mathit{st}}\:\mathit{dt}}\:\:\:\:\:\:...(1)}$$
拉普拉斯变换的时域积分性质
陈述 - 拉普拉斯变换的时间积分性质指出,如果
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{t}\right)}\overset{\mathit{LT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{s}\right)}}$$
那么
$$\mathrm{\int_{-\infty}^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\mathit{d\tau}\overset{\mathit{LT}}{\leftrightarrow}\frac{\mathit{x}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}\:\mathrm{+}\:\int_{-\infty}^{\mathrm{0}}\frac{\mathit{x}\mathrm{\left(\mathit{\tau }\right)}}{\mathit{s}}\:\mathit{d\tau}}$$
证明
考虑一个函数$\mathit{y}\mathrm{\left(\mathit{t}\right)}$,如下所示:
$$\mathrm{\mathit{y}\mathrm{\left(\mathit{t}\right)}\:\mathrm{=}\:\int_{-\infty }^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\:\mathit{d\tau}}$$
对两边关于时间求导,得到:
$$\mathrm{\frac{\mathit{d\mathit{y}\mathrm{\left(\mathit{t}\right)}}}{\mathit{dt}}\:\mathrm{=}\:\mathit{x}\mathrm{\left(\mathit{t}\right)}\:\:\:\:\:\:...(2)}$$
此外,
$$\mathrm{\mathit{y}\mathrm{\left(\mathrm{0}^{-}\right)}\:\mathrm{=}\:\int_{-\infty }^{\mathrm{0}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\:\mathit{d\tau}\:\:\:\:\:\:...(3)}$$
对等式 (2) 进行拉普拉斯变换,得到:
$$\mathrm{\mathit{L}\mathrm{\left[ \frac{\mathit{d\mathit{y}\mathrm{\left(\mathit{t}\right)}}}{\mathit{dt}}\right ]}\:\mathrm{=}\:\mathit{L}\mathrm{\left [ \mathit{x}\mathrm{\left(\mathit{t}\right)} \right ]}}$$
$$\mathrm{\Rightarrow \mathit{s}\mathit{Y}\mathrm{\left(\mathit{s}\right)}-\mathit{y}\mathrm{\left(\mathrm{0}^{-}\right)}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{s}\right)}}$$
$$\mathrm{\Rightarrow \mathit{Y}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\frac{\mathit{X}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}\:\mathrm{+}\:\frac{\mathit{y}\mathrm{\left(\mathrm{0}^{-}\right)}}{\mathit{s}}\:\:\:\:\:\:...(4)}$$
由等式 (3) 和 (4),得到:
$$\mathrm{\mathit{Y}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\frac{\mathit{X}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}\:\mathrm{+}\:\int_{-\infty}^{\mathrm{0}}\frac{\mathit{x}\mathrm{\left(\mathit{\tau }\right)}}{\mathit{s}}\:\mathit{d\tau}}$$
$$\mathrm{\therefore\mathit{Y}\mathrm{\left(\mathit{s}\right)}\:\mathrm{=}\:\mathit{L}\mathrm{\left[\int_{-\infty }^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\:\mathit{d\tau} \right ]}\:\mathrm{=}\:\frac{\mathit{X}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}\:\mathrm{+}\:\int_{-\infty}^{\mathrm{0}}\frac{\mathit{x}\mathrm{\left(\mathit{\tau }\right)}}{\mathit{s}}\:\mathit{d\tau}}$$
或者也可以表示为:
$$\mathrm{\int_{-\infty }^{\mathit{t}}\mathit{x}\mathrm{\left(\mathit{\tau }\right)}\:\mathit{d\tau} \overset{\mathit{LT}}{\leftrightarrow}\frac{\mathit{X}\mathrm{\left(\mathit{s}\right)}}{\mathit{s}}\:\mathrm{+}\:\int_{-\infty}^{\mathrm{0}}\frac{\mathit{x}\mathrm{\left(\mathit{\tau }\right)}}{\mathit{s}}\:\mathit{d\tau}}$$
因此,这证明了拉普拉斯变换的时域积分性质。