- 凸优化教程
- 首页
- 简介
- 线性规划
- 范数
- 内积
- 最小值和最大值
- 凸集
- 仿射集
- 凸包
- Caratheodory定理
- 魏尔斯特拉斯定理
- 最近点定理
- 基本分离定理
- 凸锥
- 极锥
- 锥组合
- 多面体集
- 凸集的极点
- 方向
- 凸函数与凹函数
- Jensen不等式
- 可微凸函数
- 全局最优的充分必要条件
- 拟凸函数与拟凹函数
- 可微拟凸函数
- 严格拟凸函数
- 强拟凸函数
- 伪凸函数
- 凸规划问题
- Fritz-John条件
- Karush-Kuhn-Tucker最优性必要条件
- 凸问题的算法
- 凸优化资源
- 凸优化 - 快速指南
- 凸优化 - 资源
- 凸优化 - 讨论
可微拟凸函数
定理
设S是$\mathbb{R}^n$中的一个非空凸集,且$f:S \rightarrow \mathbb{R}$在S上可微,则f是拟凸的当且仅当对于任意$x_1,x_2 \in S$且$f\left ( x_1 \right )\leq f\left ( x_2 \right )$,有$\bigtriangledown f\left ( x_2 \right )^T\left ( x_2-x_1 \right )\leq 0$
证明
设f为拟凸函数。
设$x_1,x_2 \in S$使得$f\left ( x_1 \right ) \leq f\left ( x_2 \right )$
由f在$x_2$处的可微性,$\lambda \in \left ( 0, 1 \right )$
$f\left ( \lambda x_1+\left ( 1-\lambda \right )x_2 \right )=f\left ( x_2+\lambda \left (x_1-x_2 \right ) \right )=f\left ( x_2 \right )+\bigtriangledown f\left ( x_2 \right )^T\left ( x_1-x_2 \right )$
$+\lambda \left \| x_1-x_2 \right \|\alpha \left ( x_2,\lambda \left ( x_1-x_2 \right ) \right )$
$\Rightarrow f\left ( \lambda x_1+\left ( 1-\lambda \right )x_2 \right )-f\left ( x_2 \right )-f\left ( x_2 \right )=\bigtriangledown f\left ( x_2 \right )^T\left ( x_1-x_2 \right )$
$+\lambda \left \| x_1-x_2 \right \|\alpha \left ( x2, \lambda\left ( x_1-x_2 \right )\right )$
但由于f是拟凸的,$f \left ( \lambda x_1+ \left ( 1- \lambda \right )x_2 \right )\leq f \left (x_2 \right )$
$\bigtriangledown f\left ( x_2 \right )^T\left ( x_1-x_2 \right )+\lambda \left \| x_1-x_2 \right \|\alpha \left ( x_2,\lambda \left ( x_1,x_2 \right ) \right )\leq 0$
但$\alpha \left ( x_2,\lambda \left ( x_1,x_2 \right )\right )\rightarrow 0$ as $\lambda \rightarrow 0$
因此,$\bigtriangledown f\left ( x_2 \right )^T\left ( x_1-x_2 \right ) \leq 0$
逆命题
设对于$x_1,x_2 \in S$且$f\left ( x_1 \right )\leq f\left ( x_2 \right )$,$\bigtriangledown f\left ( x_2 \right )^T \left ( x_1,x_2 \right ) \leq 0$
要证明f是拟凸的,即,$f\left ( \lambda x_1+\left ( 1-\lambda \right )x_2 \right )\leq f\left ( x_2 \right )$
反证法
假设存在一个$x_3= \lambda x_1+\left ( 1-\lambda \right )x_2$使得$f\left ( x_2 \right )< f \left ( x_3 \right )$对于某个$ \lambda \in \left ( 0, 1 \right )$
对于$x_2$和$x_3,\bigtriangledown f\left ( x_3 \right )^T \left ( x_2-x_3 \right ) \leq 0$
$\Rightarrow -\lambda \bigtriangledown f\left ( x_3 \right )^T\left ( x_2-x_3 \right )\leq 0$
$\Rightarrow \bigtriangledown f\left ( x_3 \right )^T \left ( x_1-x_2 \right )\geq 0$
对于$x_1$和$x_3,\bigtriangledown f\left ( x_3 \right )^T \left ( x_1-x_3 \right ) \leq 0$
$\Rightarrow \left ( 1- \lambda \right )\bigtriangledown f\left ( x_3 \right )^T\left ( x_1-x_2 \right )\leq 0$
$\Rightarrow \bigtriangledown f\left ( x_3 \right )^T \left ( x_1-x_2 \right )\leq 0$
因此,根据以上等式,$\bigtriangledown f\left ( x_3 \right )^T \left ( x_1-x_2 \right )=0$
定义$U=\left \{ x:f\left ( x \right )\leq f\left ( x_2 \right ),x=\mu x_2+\left ( 1-\mu \right )x_3, \mu \in \left ( 0,1 \right ) \right \}$
因此,我们可以找到$x_0 \in U$使得$x_0 = \mu_0 x_2= \mu x_2+\left ( 1- \mu \right )x_3$对于某个$\mu _0 \in \left ( 0,1 \right )$,它最接近$x_3$,并且$\hat{x} \in \left ( x_0,x_1 \right )$使得根据中值定理,
$$\frac{f\left ( x_3\right )-f\left ( x_0\right )}{x_3-x_0}= \bigtriangledown f\left ( \hat{x}\right )$$
$$\Rightarrow f\left ( x_3 \right )=f\left ( x_0 \right )+\bigtriangledown f\left ( \hat{x} \right )^T\left ( x_3-x_0 \right )$$
$$\Rightarrow f\left ( x_3 \right )=f\left ( x_0 \right )+\mu_0 \lambda f\left ( \hat{x}\right )^T \left ( x_1-x_2 \right )$$
由于$x_0$是$x_1$和$x_2$的组合,并且$f\left (x_2 \right )< f\left ( \hat{x}\right )$
通过重复起始过程,$\bigtriangledown f \left ( \hat{x}\right )^T \left ( x_1-x_2\right )=0$
因此,结合上述等式,我们得到
$$f\left ( x_3\right )=f\left ( x_0 \right ) \leq f\left ( x_2\right )$$
$$\Rightarrow f\left ( x_3\right )\leq f\left ( x_2\right )$$
因此,这是一个矛盾。
例子
步骤1 − $f\left ( x\right )=X^3$
$设 f \left ( x_1\right )\leq f\left ( x_2\right )$
$\Rightarrow x_{1}^{3}\leq x_{2}^{3}\Rightarrow x_1\leq x_2$
$\bigtriangledown f\left ( x_2 \right )\left ( x_1-x_2 \right )=3x_{2}^{2}\left ( x_1-x_2 \right )\leq 0$
因此,$f\left ( x\right )$是拟凸的。
步骤2 − $f\left ( x\right )=x_{1}^{3}+x_{2}^{3}$
设$\hat{x_1}=\left ( 2, -2\right )$和$\hat{x_2}=\left ( 1, 0\right )$
因此,$f\left ( \hat{x_1}\right )=0,f\left ( \hat{x_2}\right )=1 \Rightarrow f\left ( \hat{x_1}\right )\setminus < f \left ( \hat{x_2}\right )$
因此,$\bigtriangledown f \left ( \hat{x_2}\right )^T \left ( \hat{x_1}- \hat{x_2}\right )= \left ( 3, 0\right )^T \left ( 1, -2\right )=3 >0$
因此,$f\left ( x\right )$不是拟凸的。