Java 教程
- Java - 首页
- Java - 概述
- Java - 历史
- Java - 特性
- Java vs. C++
- JVM - Java虚拟机
- Java - JDK vs JRE vs JVM
- Java - Hello World 程序
- Java - 环境搭建
- Java - 基本语法
- Java - 变量类型
- Java - 数据类型
- Java - 类型转换
- Java - Unicode 系统
- Java - 基本运算符
- Java - 注释
- Java - 用户输入
- Java - 日期和时间
Java 控制语句
- Java - 循环控制
- Java - 决策制定
- Java - if-else
- Java - switch
- Java - for 循环
- Java - for-each 循环
- Java - while 循环
- Java - do-while 循环
- Java - break
- Java - continue
面向对象编程
- Java - 面向对象编程概念
- Java - 对象和类
- Java - 类属性
- Java - 类方法
- Java - 方法
- Java - 变量作用域
- Java - 构造函数
- Java - 访问修饰符
- Java - 继承
- Java - 聚合
- Java - 多态
- Java - 重写
- Java - 方法重载
- Java - 动态绑定
- Java - 静态绑定
- Java - 实例初始化块
- Java - 抽象
- Java - 封装
- Java - 接口
- Java - 包
- Java - 内部类
- Java - 静态类
- Java - 匿名类
- Java - 单例类
- Java - 包装类
- Java - 枚举
- Java - 枚举构造函数
- Java - 枚举字符串
Java 内置类
Java 文件处理
Java 错误和异常
- Java - 异常
- Java - try-catch 块
- Java - try-with-resources
- Java - 多重 catch 块
- Java - 嵌套 try 块
- Java - finally 块
- Java - throw 异常
- Java - 异常传播
- Java - 内置异常
- Java - 自定义异常
Java 多线程
- Java - 多线程
- Java - 线程生命周期
- Java - 创建线程
- Java - 启动线程
- Java - 线程连接
- Java - 线程命名
- Java - 线程调度器
- Java - 线程池
- Java - 主线程
- Java - 线程优先级
- Java - 守护线程
- Java - 线程组
- Java - 关闭钩子
Java 同步
Java 网络编程
- Java - 网络编程
- Java - 套接字编程
- Java - URL 处理
- Java - URL 类
- Java - URLConnection 类
- Java - HttpURLConnection 类
- Java - Socket 类
- Java - 泛型
Java 集合
Java 接口
Java 数据结构
Java 集合算法
高级 Java
- Java - 命令行参数
- Java - Lambda 表达式
- Java - 发送邮件
- Java - Applet 基础
- Java - Javadoc 注释
- Java - 自动装箱和拆箱
- Java - 文件不匹配方法
- Java - REPL (JShell)
- Java - 多版本 Jar 文件
- Java - 私有接口方法
- Java - 内部类菱形运算符
- Java - 多分辨率图像 API
- Java - 集合工厂方法
- Java - 模块系统
- Java - Nashorn JavaScript
- Java - Optional 类
- Java - 方法引用
- Java - 函数式接口
- Java - 默认方法
- Java - Base64 编码解码
- Java - switch 表达式
- Java - Teeing 收集器
- Java - 微基准测试
- Java - 文本块
- Java - 动态 CDS 归档
- Java - Z 垃圾收集器 (ZGC)
- Java - 空指针异常
- Java - 打包工具
- Java - 密封类
- Java - 记录类
- Java - 隐藏类
- Java - 模式匹配
- Java - 简洁数字格式化
- Java - 垃圾收集
- Java - JIT 编译器
Java 杂项
- Java - 递归
- Java - 正则表达式
- Java - 序列化
- Java - 字符串
- Java - Process API改进
- Java - Stream API改进
- Java - 增强的 @Deprecated 注解
- Java - CompletableFuture API改进
- Java - 流
- Java - 日期时间 API
- Java 8 - 新特性
- Java 9 - 新特性
- Java 10 - 新特性
- Java 11 - 新特性
- Java 12 - 新特性
- Java 13 - 新特性
- Java 14 - 新特性
- Java 15 - 新特性
- Java 16 - 新特性
Java APIs 和框架
Java 类引用
- Java - Scanner
- Java - 数组
- Java - 字符串
- Java - Date
- Java - ArrayList
- Java - Vector
- Java - Stack
- Java - PriorityQueue
- Java - LinkedList
- Java - ArrayDeque
- Java - HashMap
- Java - LinkedHashMap
- Java - WeakHashMap
- Java - EnumMap
- Java - TreeMap
- Java - IdentityHashMap
- Java - HashSet
- Java - EnumSet
- Java - LinkedHashSet
- Java - TreeSet
- Java - BitSet
- Java - Dictionary
- Java - Hashtable
- Java - Properties
- Java - Collection
- Java - Array
Java 有用资源
Java - 线程生命周期
Java中线程的生命周期
Java 中线程的生命周期是指线程经历的各种状态。例如,线程诞生、启动、运行,然后死亡。Thread 类定义了线程的生命周期和各种状态。
Java 线程生命周期流程图
下图显示了线程的完整生命周期。
Java中线程生命周期的状态
以下是生命周期的阶段:
新建 - 新线程从新建状态开始其生命周期。它保持在此状态,直到程序启动线程。它也称为新生线程。
可运行 - 新生线程启动后,线程变为可运行状态。处于此状态的线程被认为正在执行其任务。
等待 - 有时,当线程等待另一个线程执行任务时,线程会转换到等待状态。只有当另一个线程发出信号让等待线程继续执行时,线程才会转换回可运行状态。
计时等待 - 可运行线程可以进入计时等待状态,持续指定的间隔时间。处于此状态的线程在其时间间隔到期或其等待的事件发生时转换回可运行状态。
终止(死亡) - 可运行线程在完成其任务或以其他方式终止时进入终止状态。
演示线程状态的 Java 示例
在这个例子中,我们通过扩展 Thread 类来创建两个线程。我们打印线程的每个状态。当创建线程对象时,其状态为 NEW;当调用start() 方法时,状态为 START;当调用run() 方法时,状态为 RUNNING;当线程完成 run() 方法的处理后,它进入 DEAD 状态。
package com.tutorialspoint; class ThreadDemo extends Thread { private Thread t; private String threadName; ThreadDemo( String name) { threadName = name; System.out.println("Thread: " + threadName + ", " + "State: New"); } public void run() { System.out.println("Thread: " + threadName + ", " + "State: Running"); for(int i = 4; i > 0; i--) { System.out.println("Thread: " + threadName + ", " + i); } System.out.println("Thread: " + threadName + ", " + "State: Dead"); } public void start () { System.out.println("Thread: " + threadName + ", " + "State: Start"); if (t == null) { t = new Thread (this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { ThreadDemo thread1 = new ThreadDemo( "Thread-1"); ThreadDemo thread2 = new ThreadDemo( "Thread-2"); thread1.start(); thread2.start(); } }
输出
Thread: Thread-1, State: New Thread: Thread-2, State: New Thread: Thread-1, State: Start Thread: Thread-2, State: Start Thread: Thread-1, State: Running Thread: Thread-2, State: Running Thread: Thread-2, 4 Thread: Thread-2, 3 Thread: Thread-2, 2 Thread: Thread-2, 1 Thread: Thread-2, State: Dead Thread: Thread-1, 4 Thread: Thread-1, 3 Thread: Thread-1, 2 Thread: Thread-1, 1 Thread: Thread-1, State: Dead
更多关于线程生命周期和状态的示例
示例 1
在这个例子中,我们使用sleep() 方法来引入一些处理延迟,并展示使用线程的并行处理。我们通过扩展 Thread 类来创建两个线程。我们打印线程的每个状态。当创建线程对象时,其状态为 NEW;当调用 start() 方法时,状态为 START;当调用 run() 方法时,状态为 RUNNING;如果调用 sleep(),则线程进入 WAITING 状态;当线程完成 run() 方法的处理后,它进入 DEAD 状态。
package com.tutorialspoint; class ThreadDemo extends Thread { private Thread t; private String threadName; ThreadDemo( String name) { threadName = name; System.out.println("Thread: " + threadName + ", " + "State: New"); } public void run() { System.out.println("Thread: " + threadName + ", " + "State: Running"); try { for(int i = 4; i > 0; i--) { System.out.println("Thread: " + threadName + ", " + i); // Let the thread sleep for a while. System.out.println("Thread: " + threadName + ", " + "State: Waiting"); Thread.sleep(50); } } catch (InterruptedException e) { System.out.println("Thread " + threadName + " interrupted."); } System.out.println("Thread: " + threadName + ", " + "State: Dead"); } public void start () { System.out.println("Thread: " + threadName + ", " + "State: Start"); if (t == null) { t = new Thread (this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { ThreadDemo thread1 = new ThreadDemo( "Thread-1"); ThreadDemo thread2 = new ThreadDemo( "Thread-2"); thread1.start(); thread2.start(); } }
输出
Thread: Thread-1, State: New Thread: Thread-2, State: New Thread: Thread-1, State: Start Thread: Thread-2, State: Start Thread: Thread-1, State: Running Thread: Thread-1, 4 Thread: Thread-1, State: Waiting Thread: Thread-2, State: Running Thread: Thread-2, 4 Thread: Thread-2, State: Waiting Thread: Thread-1, 3 Thread: Thread-2, 3 Thread: Thread-2, State: Waiting Thread: Thread-1, State: Waiting Thread: Thread-2, 2 Thread: Thread-1, 2 Thread: Thread-1, State: Waiting Thread: Thread-2, State: Waiting Thread: Thread-2, 1 Thread: Thread-2, State: Waiting Thread: Thread-1, 1 Thread: Thread-1, State: Waiting Thread: Thread-2, State: Dead Thread: Thread-1, State: Dead
示例 2
在这个例子中,我们通过实现 Runnable 类来创建两个线程。我们打印线程的每个状态。当创建线程对象时,其状态为 NEW;当调用 start() 方法时,状态为 START;当调用 run() 方法时,状态为 RUNNING;如果调用 sleep(),则线程进入 WAITING 状态;当线程完成 run() 方法的处理后,它进入 DEAD 状态。
package com.tutorialspoint; class ThreadDemo implements Runnable { private Thread t; private String threadName; ThreadDemo( String name) { threadName = name; System.out.println("Thread: " + threadName + ", " + "State: New"); } public void run() { System.out.println("Thread: " + threadName + ", " + "State: Running"); try { for(int i = 4; i > 0; i--) { System.out.println("Thread: " + threadName + ", " + i); // Let the thread sleep for a while. System.out.println("Thread: " + threadName + ", " + "State: Waiting"); Thread.sleep(50); } } catch (InterruptedException e) { System.out.println("Thread " + threadName + " interrupted."); } System.out.println("Thread: " + threadName + ", " + "State: Dead"); } public void start () { System.out.println("Thread: " + threadName + ", " + "State: Start"); if (t == null) { t = new Thread (this, threadName); t.start (); } } } public class TestThread { public static void main(String args[]) { ThreadDemo thread1 = new ThreadDemo( "Thread-1"); ThreadDemo thread2 = new ThreadDemo( "Thread-2"); thread1.start(); thread2.start(); } }
输出
Thread: Thread-1, State: New Thread: Thread-2, State: New Thread: Thread-1, State: Start Thread: Thread-2, State: Start Thread: Thread-1, State: Running Thread: Thread-1, 4 Thread: Thread-1, State: Waiting Thread: Thread-2, State: Running Thread: Thread-2, 4 Thread: Thread-2, State: Waiting Thread: Thread-1, 3 Thread: Thread-2, 3 Thread: Thread-2, State: Waiting Thread: Thread-1, State: Waiting Thread: Thread-2, 2 Thread: Thread-1, 2 Thread: Thread-1, State: Waiting Thread: Thread-2, State: Waiting Thread: Thread-2, 1 Thread: Thread-2, State: Waiting Thread: Thread-1, 1 Thread: Thread-1, State: Waiting Thread: Thread-2, State: Dead Thread: Thread-1, State: Dead