- NumPy 教程
- NumPy - 首页
- NumPy - 简介
- NumPy - 环境配置
- NumPy 数组
- NumPy - Ndarray 对象
- NumPy - 数据类型
- NumPy 数组的创建和操作
- NumPy - 数组创建函数
- NumPy - 数组操作
- NumPy - 从现有数据创建数组
- NumPy - 从数值范围创建数组
- NumPy - 数组迭代
- NumPy - 数组重塑
- NumPy - 数组拼接
- NumPy - 数组堆叠
- NumPy - 数组分割
- NumPy - 数组扁平化
- NumPy - 数组转置
- NumPy 索引和切片
- NumPy - 索引和切片
- NumPy - 高级索引
- NumPy 数组属性和操作
- NumPy - 数组属性
- NumPy - 数组形状
- NumPy - 数组大小
- NumPy - 数组步长
- NumPy - 数组元素大小
- NumPy - 广播机制
- NumPy - 算术运算
- NumPy - 数组加法
- NumPy - 数组减法
- NumPy - 数组乘法
- NumPy - 数组除法
- NumPy 高级数组操作
- NumPy - 交换数组轴
- NumPy - 字节交换
- NumPy - 副本和视图
- NumPy - 元素级数组比较
- NumPy - 数组过滤
- NumPy - 数组连接
- NumPy - 排序、搜索和计数函数
- NumPy - 数组搜索
- NumPy - 数组的并集
- NumPy - 查找唯一行
- NumPy - 创建日期时间数组
- NumPy - 二元运算符
- NumPy - 字符串函数
- NumPy - 数学函数
- NumPy - 统计函数
- NumPy - 矩阵库
- NumPy - 线性代数
- NumPy - Matplotlib
- NumPy - 使用 Matplotlib 绘制直方图
- NumPy - NumPy 的 I/O 操作
- NumPy 排序和高级操作
- NumPy - 数组排序
- NumPy - 沿轴排序
- NumPy - 使用花式索引排序
- NumPy - 结构化数组
- NumPy - 创建结构化数组
- NumPy - 操作结构化数组
- NumPy - 字段访问
- NumPy - 记录数组
- Numpy - 加载数组
- Numpy - 保存数组
- NumPy - 向数组追加值
- NumPy - 交换数组的列
- NumPy - 向数组插入轴
- NumPy 处理缺失数据
- NumPy - 处理缺失数据
- NumPy - 识别缺失值
- NumPy - 删除缺失数据
- NumPy - 缺失数据插补
- NumPy 性能优化
- NumPy - 使用数组进行性能优化
- NumPy - 使用数组进行矢量化
- NumPy - 数组的内存布局
- Numpy 线性代数
- NumPy - 线性代数
- NumPy - 矩阵库
- NumPy - 矩阵加法
- NumPy - 矩阵减法
- NumPy - 矩阵乘法
- NumPy - 元素级矩阵运算
- NumPy - 点积
- NumPy - 矩阵求逆
- NumPy - 行列式计算
- NumPy - 特征值
- NumPy - 特征向量
- NumPy - 奇异值分解
- NumPy - 求解线性方程组
- NumPy - 矩阵范数
- NumPy 元素级矩阵运算
- NumPy - 求和
- NumPy - 求平均值
- NumPy - 求中位数
- NumPy - 求最小值
- NumPy - 求最大值
- NumPy 集合运算
- NumPy - 唯一元素
- NumPy - 交集
- NumPy - 并集
- NumPy - 差集
- NumPy 有用资源
- NumPy 编译器
- NumPy - 快速指南
- NumPy - 有用资源
- NumPy - 讨论
NumPy - 数学函数
可以理解的是,NumPy 包含大量的各种数学运算。NumPy 提供标准三角函数、算术运算函数、复数处理函数等。
三角函数
NumPy 具有标准三角函数,这些函数返回给定角度(以弧度表示)的三角比。
示例
import numpy as np a = np.array([0,30,45,60,90]) print 'Sine of different angles:' # Convert to radians by multiplying with pi/180 print np.sin(a*np.pi/180) print '\n' print 'Cosine values for angles in array:' print np.cos(a*np.pi/180) print '\n' print 'Tangent values for given angles:' print np.tan(a*np.pi/180)
以下是其输出:
Sine of different angles: [ 0. 0.5 0.70710678 0.8660254 1. ] Cosine values for angles in array: [ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01 6.12323400e-17] Tangent values for given angles: [ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00 1.63312394e+16]
arcsin、arcos 和 arctan 函数返回给定角度的 sin、cos 和 tan 的三角反函数。可以使用 numpy.degrees() 函数将弧度转换为度数来验证这些函数的结果。
示例
import numpy as np a = np.array([0,30,45,60,90]) print 'Array containing sine values:' sin = np.sin(a*np.pi/180) print sin print '\n' print 'Compute sine inverse of angles. Returned values are in radians.' inv = np.arcsin(sin) print inv print '\n' print 'Check result by converting to degrees:' print np.degrees(inv) print '\n' print 'arccos and arctan functions behave similarly:' cos = np.cos(a*np.pi/180) print cos print '\n' print 'Inverse of cos:' inv = np.arccos(cos) print inv print '\n' print 'In degrees:' print np.degrees(inv) print '\n' print 'Tan function:' tan = np.tan(a*np.pi/180) print tan print '\n' print 'Inverse of tan:' inv = np.arctan(tan) print inv print '\n' print 'In degrees:' print np.degrees(inv)
其输出如下:
Array containing sine values: [ 0. 0.5 0.70710678 0.8660254 1. ] Compute sine inverse of angles. Returned values are in radians. [ 0. 0.52359878 0.78539816 1.04719755 1.57079633] Check result by converting to degrees: [ 0. 30. 45. 60. 90.] arccos and arctan functions behave similarly: [ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01 6.12323400e-17] Inverse of cos: [ 0. 0.52359878 0.78539816 1.04719755 1.57079633] In degrees: [ 0. 30. 45. 60. 90.] Tan function: [ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00 1.63312394e+16] Inverse of tan: [ 0. 0.52359878 0.78539816 1.04719755 1.57079633] In degrees: [ 0. 30. 45. 60. 90.]
舍入函数
numpy.around()
这是一个返回舍入到所需精度的值的函数。该函数采用以下参数。
numpy.around(a,decimals)
其中,
序号 | 参数和描述 |
---|---|
1 | a 输入数据 |
2 | decimals 要舍入到的十进制位数。默认为 0。如果为负数,则整数将舍入到小数点左边的位置。 |
示例
import numpy as np a = np.array([1.0,5.55, 123, 0.567, 25.532]) print 'Original array:' print a print '\n' print 'After rounding:' print np.around(a) print np.around(a, decimals = 1) print np.around(a, decimals = -1)
它产生以下输出:
Original array: [ 1. 5.55 123. 0.567 25.532] After rounding: [ 1. 6. 123. 1. 26. ] [ 1. 5.6 123. 0.6 25.5] [ 0. 10. 120. 0. 30. ]
numpy.floor()
此函数返回不大于输入参数的最大整数。标量 x 的 floor 是最大的整数 i,使得 i <= x。请注意,在 Python 中,向下取整总是远离 0 舍入。
示例
import numpy as np a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) print 'The given array:' print a print '\n' print 'The modified array:' print np.floor(a)
它产生以下输出:
The given array: [ -1.7 1.5 -0.2 0.6 10. ] The modified array: [ -2. 1. -1. 0. 10.]
numpy.ceil()
ceil() 函数返回输入值的向上取整,即标量 x 的 ceil 是最小的整数 i,使得 i >= x。
示例
import numpy as np a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) print 'The given array:' print a print '\n' print 'The modified array:' print np.ceil(a)
它将产生以下输出:
The given array: [ -1.7 1.5 -0.2 0.6 10. ] The modified array: [ -1. 2. -0. 1. 10.]
广告